Stories
Slash Boxes
Comments

SoylentNews is people

posted by CoolHand on Monday November 14 2016, @04:20PM   Printer-friendly
from the avoid-the-kryptonite dept.

Researchers have discovered that electrons that spin synchronously around their axes remain superconductive across large distances within magnetic chrome dioxide. Electric current from these electrons can flip small magnets, and its superconductive version could form the basis of a hard drive without energy loss. The study has been published in Physical Review X.

In Leiden in 1911, Nobel Prize-winner Heike Kamerlingh Onnes discovered the principle of superconduction; electric current flowing through ice-cold metal without any resistance. This super-current can transport electricity or power an electromagnet without energy loss, an essential property for MRI scanners, maglev trains and nuclear fusion reactors.

Half a century later, scientists discovered that electrons appear to form pairs, enabling the super-current to escape the classical rules of electricity. Physicists assumed that both electrons spin around their axes in opposite directions, so that the pairs have a net 'spin' of zero. Around the turn of the century, that assumption proved to be premature. Super-currents can, indeed, have a net 'spin,' and even possibly manipulate small magnets.

Leiden physicist Prof. Jan Aarts and his group have now created a wire made of chrome dioxide, which only carries currents with 'spin.' They cooled it to a superconducting state and measured a particularly strong current of a billion A/m2. That's powerful enough to flip magnets, potentially facilitating future hard drives without energy loss. Moreover, the super-current covered a record distance of 600 nanometer. This seems like a small stretch—bacteria are bigger—but it lets electron pairs survive long enough for practical use.


Original Submission

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 2) by butthurt on Monday November 14 2016, @07:32PM

    by butthurt (6141) on Monday November 14 2016, @07:32PM (#426634) Journal

    You can take that fucking hard drive and install it where the Sun doesn't shine, namely Shackleton Crater on the Moon.

    https://en.wikipedia.org/wiki/Shackleton_%28crater%29 [wikipedia.org]

    Superconductivity with passive cooling may be possible there. Getting there could require energy though.

    Starting Score:    1  point
    Karma-Bonus Modifier   +1  

    Total Score:   2