Stories
Slash Boxes
Comments

SoylentNews is people

posted by on Saturday November 19 2016, @10:05AM   Printer-friendly
from the just-a-little-off-the-top-please dept.

Scientists have established comprehensive maps of the human epigenome, shedding light on how the body regulates which genes are active in which cells. Over the last five years, a worldwide consortium of scientists has established epigenetic maps of 2,100 cell types. Within this coordinated effort, the CeMM Research Center for Molecular Medicine contributed detailed DNA methylation maps of the developing blood, opening up new perspectives for the understanding and treatment of leukemia and immune diseases.

One of the great mysteries in biology is how the many different cell types that make up our bodies are derived from a single cell and from one DNA sequence, or genome. We have learned a lot from studying the human genome, but have only partially unveiled the processes underlying cell determination. The identity of each cell type is largely defined by an instructive layer of molecular annotations on top of the genome -- the epigenome -- which acts as a blueprint unique to each cell type and developmental stage.

Unlike the genome the epigenome changes as cells develop and in response to changes in the environment. Defects in the factors that read, write, and erase the epigenetic blueprint are involved in many diseases. The comprehensive analysis of the epigenomes of healthy and abnormal cells will facilitate new ways to diagnose and treat various diseases, and ultimately lead to improved health outcomes.

How far away from direct editing our genome are we, then?

Paper referenced in TFA.

Related topics:
Epigenetics, CRISPR Gene Editing, DNA Methylation


Original Submission

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 2) by dlb on Saturday November 19 2016, @01:54PM

    by dlb (4790) on Saturday November 19 2016, @01:54PM (#429392)

    How far away from direct editing our genome are we, then?

    To change the functioning of one of a person's body systems involves changing not only the genome, but the epigenome (a multitude of chemical compounds that can tell the genome what to do). Editing our genome to cure or improve our bodies involves a complexity that expands exponentially the more we find out about how to do it. My guess is that we're farther off than pop science in the news suggests. TFA admits as much:

    One of the great mysteries in biology is how the many different cell types that make up our bodies are derived from a single cell and from one DNA sequence, or genome. We have learned a lot from studying the human genome, but have only partially unveiled the processes underlying cell determination...

    Starting Score:    1  point
    Karma-Bonus Modifier   +1  

    Total Score:   2  
  • (Score: 1) by Grey on Saturday November 19 2016, @09:33PM

    by Grey (5802) on Saturday November 19 2016, @09:33PM (#429629)

    I agree... although we *can* edit methylation with CRISPR: http://www.nature.com/nature/journal/v537/n7622/full/537588c.html [nature.com]