Stories
Slash Boxes
Comments

SoylentNews is people

SoylentNews is powered by your submissions, so send in your scoop. Only 15 submissions in the queue.
posted by mrpg on Saturday May 06 2017, @04:31AM   Printer-friendly
from the oh-chit dept.

In classical computer science, information is stored in bits; in quantum computer science, information is stored in quantum bits, or qubits. Experiments at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw prove that chemistry is also a suitable basis for storing information. The chemical bit, or 'chit,' is a simple arrangement of three droplets in contact with each other, in which oscillatory reactions occur.

In typical electronic memory, zeros and ones are recorded, stored and read by physical phenomena such as the flow of electricity or the change in electrical or magnetic properties. Dr. Konrad Gizynski and Prof. Jerzy Gorecki from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw have demonstrated a working memory based on chemical phenomena. A single bit is stored here in three adjoining droplets, between which chemical reaction fronts propagate steadily, cyclically, and in a strictly defined manner.

The chemical foundation of this form of memory is the Belousov-Zhabotinsky (BZ) reaction. The course of the reaction is oscillatory. When one cycle ends, the reagents necessary to start the next cycle are reconstituted in the solution. Before the reaction stops, there are usually several tens to hundreds of oscillations. They are accompanied by a regular change in the colour of the solution, caused by ferroin—the reaction catalyst. The second catalyst used by the Warsaw researchers was ruthenium. The introduction of ruthenium causes the BZ reaction to become photosensitive—when the solution is illuminated by blue light, it ceases to oscillate. This feature makes it possible to control the course of the reaction.

"Our idea for the chemical storage of information was simple. From our previous experiments, we knew that when Belousov-Zhabotinsky droplets are in contact, chemical fronts can propagate from droplet to droplet. So we decided to look for the smallest droplet systems in which excitations could take place in several ways, with at least two being stable. We could then assign one sequence of excitations a logic value of 0, the other 1, and in order to switch between them and force a particular change of memory state, we could use light," explains Prof. Gorecki.


Original Submission

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 0) by Anonymous Coward on Saturday May 06 2017, @08:44AM

    by Anonymous Coward on Saturday May 06 2017, @08:44AM (#505364)

    And then we have the "tits". Very much a system depending on oscillatory motion. Predicting what will happen next based on proximity is fairly easy :)