Stories
Slash Boxes
Comments

SoylentNews is people

posted by mrpg on Wednesday July 12 2017, @08:11AM   Printer-friendly
from the 19200-dpi dept.

Researchers have brought 3D-printed organ and tissue capabilities a long way, but the technology still faces a few challenges. A major one is how to incorporate blood vessels into bioprinted tissue. Living tissue needs a blood supply nearby because without blood to bring in nutrients and take away waste, biological cells will die. Researchers have been able to print larger blood vessels, but functional small vessels like capillaries have been much harder to create and sustain. However, researchers at Rice University and Baylor College of Medicine have developed a new technique, published in Biomaterials Science, that might make it possible.

All of our blood vessels are lined with a type of cell called endothelial cells. To form vessels, individual endothelial cells begin to create empty holes in themselves, called vacuoles. They then connect with other endothelial cells that have done the same thing and the linked vacuoles form tubes, which ultimately become capillaries. Here, the researchers took endothelial cells and mixed them with either fibrin -- a protein involved in blood clotting -- or a semi-synthetic material called gelatin methacrylate (GelMA), which can be easily 3D-printed. When mixed with fibrin, the endothelial cells formed tubes fairly easily, but that wasn't the case with the GelMA. However, when the researchers added in another type of cell, a stem cell found in bone marrow, the endothelial cells were then able to form tubes in the GelMA.

"We've confirmed that these cells have the capacity to form capillary-like structures, both in a natural material called fibrin and in a semi-synthetic material called gelatin methacrylate, or GelMA," Gisele Calderon, the lead author of the study, said in a statement, "The GelMA finding is particularly interesting because it is something we can readily 3D print for future tissue-engineering applications."

Source: Engadget


Original Submission

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 0) by Anonymous Coward on Wednesday July 12 2017, @06:31PM

    by Anonymous Coward on Wednesday July 12 2017, @06:31PM (#538228)

    empty holes

    To pick a nit, that seems redundant.

    blood to bring in nutrients and take away waste

    ...and the holes need to be large enough for that -and- small enough that the blood cells don't get out.
    Hmmm. Maybe too obvious for them to mention.

    -- OriginalOwner_ [soylentnews.org]