Stories
Slash Boxes
Comments

SoylentNews is people

posted by Fnord666 on Wednesday August 16 2017, @03:34PM   Printer-friendly
from the let-there-be-light dept.

Arthur T Knackerbracket has found the following story:

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are sufficiently concentrated and cooled.

The artist's rendering shows how potential wells are created for the light in the microresonator through heating with an external laser beam (green).

The individual particles merge with each other, making them indistinguishable. Researchers call this a photonic Bose-Einstein condensate. It has long been known that normal atoms form such condensates.

Prof. Martin Weitz from the Institute of Applied Physics at the University of Bonn attracted attention among experts in 2010 when he produced a Bose-Einstein condensate from photons for the first time.

In his latest study, Prof. Weitz' team experimented with this kind of super-photon. In the experimental setup, a laser beam was rapidly bounced back and forth between two mirrors. In between was a pigment that cooled the laser light to such an extent that a super-photon was created from the individual light portions. "The special thing is that we have built a kind of optical well in various forms, into which the Bose-Einstein condensate was able to flow," reports Weitz.

Journal Reference: David Dung, Christian Kurtscheid, Tobias Damm, Julian Schmitt, Frank Vewinger, Martin Weitz & Jan Klärs: Variable Potentials for Thermalized Light and Coupled Condensates, Nature Photonics, DOI: 10.1038/nphoton.2017.139


Original Submission

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 2) by HiThere on Wednesday August 16 2017, @05:09PM

    by HiThere (866) Subscriber Badge on Wednesday August 16 2017, @05:09PM (#554788) Journal

    From the article it isn't clear whether this required liquid helium temperatures. That's one of the stumbling blocks to common use of quantum computers. (Yeah, there are others. But that one's not minor.)

    OTOH, it's also not clear why a photon should need to have temperatures near absolute zero. So this may be an end-run around that problem.

    --
    Javascript is what you use to allow unknown third parties to run software you have no idea about on your computer.
    Starting Score:    1  point
    Karma-Bonus Modifier   +1  

    Total Score:   2