Stories
Slash Boxes
Comments

SoylentNews is people

SoylentNews is powered by your submissions, so send in your scoop. Only 17 submissions in the queue.
posted by martyb on Thursday January 18 2018, @12:54PM   Printer-friendly
from the gonna-need-ultra-thin-cooling dept.

Engineers worldwide have been developing alternative ways to provide greater memory storage capacity on even smaller computer chips. Previous research into two-dimensional atomic sheets for memory storage has failed to uncover their potential -- until now.

A team of electrical engineers at The University of Texas at Austin, in collaboration with Peking University scientists, has developed the thinnest memory storage device with dense memory capacity, paving the way for faster, smaller and smarter computer chips for everything from consumer electronics to big data to brain-inspired computing.

"For a long time, the consensus was that it wasn't possible to make memory devices from materials that were only one atomic layer thick," said Deji Akinwande, associate professor in the Cockrell School of Engineering's Department of Electrical and Computer Engineering. "With our new 'atomristors,' we have shown it is indeed possible."

Made from 2-D nanomaterials, the "atomristors" -- a term Akinwande coined -- improve upon memristors, an emerging memory storage technology with lower memory scalability. He and his team published their findings in the January issue of Nano Letters.

"Atomristors will allow for the advancement of Moore's Law at the system level by enabling the 3-D integration of nanoscale memory with nanoscale transistors on the same chip for advanced computing systems," Akinwande said.

Source:https://www.sciencedaily.com/releases/2018/01/180117114918.htm

Journal Reference:

Ruijing Ge, Xiaohan Wu, Myungsoo Kim, Jianping Shi, Sushant Sonde, Li Tao, Yanfeng Zhang, Jack C. Lee, Deji Akinwande. Atomristor: Nonvolatile Resistance Switching in Atomic Sheets of Transition Metal Dichalcogenides. Nano Letters, 2017; 18 (1): 434 DOI: 10.1021/acs.nanolett.7b04342


Original Submission

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 2) by takyon on Thursday January 18 2018, @10:00PM

    by takyon (881) <takyonNO@SPAMsoylentnews.org> on Thursday January 18 2018, @10:00PM (#624425) Journal

    It's nevertheless the first thing that is likely to get stacked on the CPU, long before other CPU cores get stacked on top (which is a goal for the industry).

    Kaby Lake with AMD graphics [anandtech.com] does it like you suggest, adding 4 GB of High Bandwidth Memory on the same chip but off to the side. On the other hand, Intel Knights Landing Xeon Phi chips have 16 GiB of MCDRAM sitting on top [intel.com] of the processor. And the TDPs of those chips [wikipedia.org] range from 215 W to 260 W... quite hot.

    --
    [SIG] 10/28/2017: Soylent Upgrade v14 [soylentnews.org]
    Starting Score:    1  point
    Karma-Bonus Modifier   +1  

    Total Score:   2