Stories
Slash Boxes
Comments

SoylentNews is people

posted by Fnord666 on Sunday February 04 2018, @03:31PM   Printer-friendly
from the three's-a-generality dept.

In 1993, physicist Lucien Hardy proposed an experiment showing that there is a small probability (around 6-9%) of observing a particle and its antiparticle interacting with each other without annihilating—something that is impossible in classical physics. The way to explain this result is to require quantum theory to be nonlocal: that is, to allow for the existence of long-range quantum correlations, such as entanglement, so that particles can influence each other across long distances.

So far, Hardy's paradox has been experimentally demonstrated with two particles, and a few special cases with more than two particles have been proposed but not experimentally demonstrated. Now in a new paper published in Physical Review Letters, physicists have presented a generalized Hardy's paradox that extends to any number of particles. Further, they show that any version of Hardy's paradox that involves three or more particles conflicts with local (classical) theory even more strongly than any of the previous versions of the paradox do. To illustrate, the physicists proposed an experiment with three particles in which the probability of observing the paradoxical event reaches an estimated 25%.

"In this paper, we show a family of generalized Hardy's paradox to the most degree, in that by adjusting certain parameters they not only include previously known extensions as special cases, but also give sharper conflicts between quantum and classical theories in general," coauthor Jing-Ling Chen at Nankai University and the National University of Singapore told Phys.org. "What's more, based on the paradoxes, we are able to write down novel Bell's inequalities, which enable us to detect more quantum entangled states."

https://phys.org/news/2018-02-hardy-paradox-stronger-conflict-quantum.html

-- submitted from IRC


Original Submission

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 0) by Anonymous Coward on Monday February 05 2018, @10:15AM

    by Anonymous Coward on Monday February 05 2018, @10:15AM (#633222)

    The universe does not need to "be a simulation" just because things act at a distance.

    Nobody claimed that, as far as I can see. But I'd like to correct you in one point (that is also a correction to the article): Just because things appear to act at a distance.

    Quantum entanglement is in no way proving action at a distance. It is just that if you try to apply a classical picture then you inevitably have to add an action at a distance to that picture to make things work. If you are happy with quantum mechanics just working differently, you'll see it's just non-classical correlations. In particular, you cannot use it to transmit information (and indeed, you can derive some fundamental properties of quantum mechanics from that very fact). So the more reasonable assumption is that there is no action at a distance, but our classical intuition just doesn't work at that level.

    Which isn't too surprising, given that our brain evolved to interpret events at a macroscopic level. Our survival never depended on an understanding of quantum mechanical processes. And certainly nature was not tailor-made for our brain to intuitively understand.