Stories
Slash Boxes
Comments

SoylentNews is people

posted by takyon on Saturday April 28 2018, @11:29PM   Printer-friendly
from the decadeometer dept.

Intel on Thursday announced that it would delay mass production of its 10 nm processors from 2018 to 2019 due to yield issues. The company has claimed to be shipping some of its 10 nm chips in small volumes right now, but due to cost reasons the firm does not intend to initiate their high-volume manufacturing (HVM) at this time. Intel executives also stated that they are confident of their product roadmap and intend to launch Whiskey Lake and Cascade Lake products later this year.

[...] Intel blames a very high transistor density and consequent heavy use of multipatterning for low yields. Brian Krzanich has said that in certain cases the company needs to use quad (4x), penta (5x), or hexa (6x) patterning for select features as they need to expose the wafer up to six times to "draw" one feature. This not only lengthens Intel's manufacturing cycle (which by definition rises costs) and the number of masks it uses, but also has an effect on yields.

Intel's 10 nm fabrication technology relies solely on deep ultraviolet (DUV) lithography with lasers operating on a 193 nm wavelength at this time. The company's 7 nm manufacturing process will use extreme ultraviolet (EUV) lithography with laser wavelength of 13.5 nm for select layers, eliminating use of extreme multipatterning for certain metal layers. As it appears, right now Intel executives do not consider EUV technology ready for prime time in 2019, so the company's engineers have to polish off the last DUV-only process (again) rather than jump straight to 7 nm.

The delay means another generation of "14nm" products:

Intel does not elaborate whether it intends to ship (in volume) its 10 nm CPUs in the first half or the second half of 2019, but only says that the company’s engineers know the source of the yield problems and are working hard to fix them. As a result, it is pretty safe to assume that the actual ramp of Intel’s 10 nm production will begin towards the second half of next year.

In a bid to stay competitive before its 10-nm CPUs ship in the H2 2019 – H1 2020 (production ramp takes time, bigger processors will launch later than smaller parts), Intel plans to release another generation of products made using its 14 nm process tech. This generation of chips includes Whiskey Lake products for client PCs and Cascade Lake for the datacenter, and both are scheduled for release later this year.


Original Submission

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 2) by tibman on Sunday April 29 2018, @08:35PM (1 child)

    by tibman (134) Subscriber Badge on Sunday April 29 2018, @08:35PM (#673477)

    All of those top CPUs are over $1,000. Those aren't CPUs for anyone but military and businesses with deep pockets. Meanwhile, AMDs latest consumer release, the R7 2700x has 17,174 points for $329.99 (going by that graph).

    Intel's current best consumer processor is the i7-8700k which has 16,047 points for 339.99. Intel has brand inertia right now, not a better consumer product.

    "Moar Cores" isn't a joke. It's AMD's latest innovation. Not more cores on one die. But more cores that can be repackaged together via their cpu fabric. That lets them scale their CPUs up without scaling their die size up and lose more CPUs due to manufacturing defects. Which is the issue Intel is having with their 10nm process.

    --
    SN won't survive on lurkers alone. Write comments.
    Starting Score:    1  point
    Karma-Bonus Modifier   +1  

    Total Score:   2  
  • (Score: 0) by Anonymous Coward on Monday April 30 2018, @01:19AM

    by Anonymous Coward on Monday April 30 2018, @01:19AM (#673555)

    Don't forget that you actually get this nice little feature called "Meltdown" on Intel CPUs for that kind of performance.