Stories
Slash Boxes
Comments

SoylentNews is people

posted by CoolHand on Friday June 01 2018, @06:14PM   Printer-friendly
from the cute-little-critters dept.

Engineers at the University of California San Diego have developed tiny ultrasound-powered robots that can swim through blood, removing harmful bacteria along with the toxins they produce. These proof-of-concept nanorobots could one day offer a safe and efficient way to detoxify and decontaminate biological fluids.

Researchers built the nanorobots by coating gold nanowires with a hybrid of platelet and red blood cell membranes. This hybrid cell membrane coating allows the nanorobots to perform the tasks of two different cells at once—platelets, which bind pathogens like MRSA bacteria (an antibiotic-resistant strain of Staphylococcus aureus), and red blood cells, which absorb and neutralize the toxins produced by these bacteria. The gold body of the nanorobots responds to ultrasound, which gives them the ability to swim around rapidly without chemical fuel. This mobility helps the nanorobots efficiently mix with their targets (bacteria and toxins) in blood and speed up detoxification.

The work, published May 30 in Science Robotics, combines technologies pioneered by Joseph Wang and Liangfang Zhang, professors in the Department of NanoEngineering at the UC San Diego Jacobs School of Engineering. Wang's team developed the ultrasound-powered nanorobots, and Zhang's team invented the technology to coat nanoparticles in natural cell membranes.

[...]The nanorobots are about 25 times smaller than the width of a human hair. They can travel up to 35 micrometers per second in blood when powered by ultrasound. In tests, researchers used the nanorobots to treat blood samples contaminated with MRSA and their toxins. After five minutes, these blood samples had three times less bacteria and toxins than untreated samples.

The work is still at an early stage. Researchers note that the ultimate goal is not to use the nanorobots specifically for treating MRSA infections, but more generally for detoxifying biological fluids. Future work includes tests in live animals. The team is also working on making nanorobots out of biodegradable materials instead of gold.

Paper title: "Hybrid biomembrane-functionalized nanorobots for concurrent removal of pathogenic and toxins." Co-authors include joint co-first authors Pavimol Angsantikul and Doris. E Ramirez-Herrera, Fernando Soto, Hazhir Teymourian and Diana Dehaini, Yijie Chen, all at UC San Diego.

Explore further: Toward nanorobots that swim through blood to deliver drugs

More information: Berta Esteban-Fernández de Ávila et al. Hybrid biomembrane–functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins, Science Robotics (2018). DOI: 10.1126/scirobotics.aat0485


Original Submission

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.