Stories
Slash Boxes
Comments

SoylentNews is people

posted by Fnord666 on Monday July 30 2018, @12:05PM   Printer-friendly
from the myelin++ dept.

The discovery is a major step toward understanding the mechanisms of myelin production and the potential for treating certain central nervous system diseases

The nervous system is a complex organ that relies on a variety of biological players to ensure daily function of the human body. Myelin--a membrane produced by specialized glial cells--plays a critical role in protecting the fibers that help carry messages throughout the body.

The study by Scaglione et al, identifies PRMT5 as a molecule that promotes new myelin formation , by acting on histones (proteins bound to DNA) and placing marks (CH3), which preclude the formation of obstacles to the differentiation of progenitor cells (by preventing KATs from depositing Ac marks)

In the central nervous system (CNS), glial cells known as oligodendrocytes are responsible for producing myelin. Now, a paper published today in Nature Communications explains how researchers at the Advanced Science Research Center (ASRC) at The Graduate Center of The City University of New York have uncovered the role of a protein known as "PRMT5" in the production of myelin and, ultimately, proper development and function of the CNS.

[...] The molecular mechanisms that generate myelin-forming oligodendrocytes are only partially understood, but through their research, ASRC scientists are one step closer to identifying them. Their work has pinpointed PRMT5 as a protein that regulates the molecules responsible for stopping or promoting the expression of certain genes that are needed for survival of oligodendrocytes and production of myelin. In other words, PRMT5 essentially acts as a traffic cop, allowing progenitor cells to become oligodendrocytes and stopping the biological signals that would interfere with myelin production.

"We were able to show that when PRMT5 is present, the progenitor cells are able to differentiate and become myelin-producing cells," said Patrizia Casaccia, director of the ASRC's Neuroscience Initiative and the Einstein Professor of Biology at Hunter College and at The Graduate Center, CUNY.

"We discovered that progenitor cells lacking PRMT5 function essentially commit suicide while they are in the process of transitioning into myelin-forming cells. This discovery is important from a developmental and a translational standpoint. On one end, our findings allow a better understanding of how myelin is formed and possibly repaired when damaged. On the other end, they warn about potentially the possibility that pharmacological inhibitors of PRMT5, currently evaluated for their toxic function on glial tumor cells, might also kill healthy cells and prevent new myelin formation.

The study by Scaglione et al, identifies PRMT5 as a molecule that promotes new myelin formation , by acting on histones (proteins bound to DNA) and placing marks (CH3), which preclude the formation of obstacles to the differentiation of progenitor cells (by preventing KATs from depositing Ac marks)


Original Submission

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 0) by Anonymous Coward on Tuesday July 31 2018, @01:38AM (1 child)

    by Anonymous Coward on Tuesday July 31 2018, @01:38AM (#715017)

    There is hope that some Soylentils who are nervous system challenged may be able, in the future, to grow a brain?

  • (Score: 2) by takyon on Tuesday July 31 2018, @04:05AM

    by takyon (881) <reversethis-{gro ... s} {ta} {noykat}> on Tuesday July 31 2018, @04:05AM (#715058) Journal

    Not until we have a deep understanding of how midichlorians work.

    --
    [SIG] 10/28/2017: Soylent Upgrade v14 [soylentnews.org]