Stories
Slash Boxes
Comments

SoylentNews is people

SoylentNews is powered by your submissions, so send in your scoop. Only 17 submissions in the queue.
posted by Fnord666 on Monday April 29 2019, @07:47AM   Printer-friendly
from the cool-idea dept.

Submitted via IRC for ErnestTBass

Study shows the potential of carbon nanotubes to cool electronic circuits

The use of solid-state refrigerators to cool appliances and electronic devices is a possible technological application for a theoretical study conducted at the University of Campinas (UNICAMP) in São Paulo State, Brazil.

Although this application is not considered in the study, which was based on computer simulations, such applications are on the horizon and could be an efficient and environmentally friendly alternative to vapor-compression refrigerators, which currently dominate the market and contribute to ozone depletion and global warming.

The study, led by Alexandre Fonseca with participation by his former student Tiago Cantuário, was part of the project "Carbon nanostructures: modeling and simulations," supported by São Paulo Research Foundation—FAPESP. The results are published in an article in the journal Annalen der Physik.

"Solid-state cooling is a young field of research with promising results. The method we investigated is based on the so-called elastocaloric effect (ECE), which makes use of temperature variations in a system in response to mechanical stress. We performed computer simulations of this effect in carbon nanotubes," Fonseca said.

[...] "We began our research on the basis of an article entitled 'Elastocaloric effect in carbon nanotubes and graphene', published in 2016 by Sergey Lisenkov and collaborators. It described a computer simulation study showing that when a small deformation was applied to carbon nanotubes, corresponding to up to 3% of their initial length, they responded with a temperature variation of up to 30 °C," Fonseca said.

"In contrast with Lisenkov's research, which simulated only simple strain and compressive force applied to the nanotubes, we reproduced the process computationally for a complete thermodynamic cycle. In our simulation, we considered two phases—nanotube strain and release—and two heat exchanges with two external reservoirs. We estimated the heat that would be extracted by the nanotube if it was in ideal contact with a certain medium. We obtained a good result for the performance coefficient compared with those of other experimentally tested materials."

[...] "The core problem in electronics is cooling. Our motivation was imagining a device that could use a simple cycle to extract heat from an appliance. Carbon nanotubes proved highly promising," he said. "They also have another virtue, which is that they're small enough to be embedded in a polymer matrix, a desirable property at a time when manufacturers are investing in research and development to obtain flexible electronic devices such as foldable smartphones." All this is part of a larger picture in which vapor-compression refrigerators are replaced by solid-state refrigerators in the context of global climate change.


Original Submission

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 0) by Anonymous Coward on Monday April 29 2019, @03:52PM

    by Anonymous Coward on Monday April 29 2019, @03:52PM (#836283)
    The TLDR. Paper is on simulation of elastocaloric effect. Predicts it. Someone will have to do the experiment to test the hypothesis. Then someone might test to see if it's effective as an active cooling device. Sounds like you just want a better thermal interface material. See this paper actually comparing various thermal interface materials, including Vertically aligned carbon nanotube turfs (VACNTs) https://research.libraries.wsu.edu/xmlui/handle/2376/3504/ [wsu.edu] GoCougs