Stories
Slash Boxes
Comments

SoylentNews is people

SoylentNews is powered by your submissions, so send in your scoop. Only 15 submissions in the queue.
posted by martyb on Saturday July 06 2019, @05:23PM   Printer-friendly
from the spoonful-of-relativity dept.

[Ed. note: This article was recently published (July 6, 2019) on the Science Alert web site. As a footnote on the Science Alert story notes: "This article was originally published at Aeon and has been republished under Creative Commons." Viewing the source HTML at Aeon, I discovered it was originally published 02-Feb-2018. Though the material is somewhat dated, it was the first I'd heard of this and thought it sufficiently interesting to share with the SoylentNews community. --martyb]

Entanglement of particles, i.e. quantum nonlocality, is routinely demonstrated in particles separated by space.

But space and time are related, leading to a team of physicists demonstrating that quantum entanglement can occur across time with particles that shared no concurrent existence.

Just when you thought quantum mechanics couldn't get any weirder, a team of physicists at the Hebrew University of Jerusalem reported in 2013 that they had successfully entangled photons that never coexisted.

Previous experiments involving a technique called 'entanglement swapping' had already showed quantum correlations across time, by delaying the measurement of one of the coexisting entangled particles; but Eli Megidish and his collaborators were the first to show entanglement between photons whose lifespans did not overlap at all.

One might be curious how a measurement done on one particle might be instantly reflected on another that doesn't exist yet, so here is how this was accomplished:

First, they created an entangled pair of photons, '1-2' (step I in the diagram below). Soon after, they measured the polarisation of photon 1 (a property describing the direction of light's oscillation) – thus 'killing' it (step II).

Photon 2 was sent on a wild goose chase while a new entangled pair, '3-4', was created (step III). Photon 3 was then measured along with the itinerant photon 2 in such a way that the entanglement relation was 'swapped' from the old pairs ('1-2' and '3-4') onto the new '2-3' combo (step IV).

Some time later (step V), the polarisation of the lone survivor, photon 4, is measured, and the results are compared with those of the long-dead photon 1 (back at step II).

The upshot? The data revealed the existence of quantum correlations between 'temporally nonlocal' photons 1 and 4. That is, entanglement can occur across two quantum systems that never coexisted.

The physicist's speculation on what this means is somewhat reminiscent of a cat in a box:

Perhaps the measurement of photon 1's polarisation at step II somehow steers the future polarisation of 4, or the measurement of photon 4's polarisation at step V somehow rewrites the past polarisation state of photon 1.

For this to begin to make sense, recall that simultaneity is not the absolute Newtonian property you perceive, but per Einstein

a relative one. There is no single timekeeper for the Universe; precisely when something is occurring depends on your precise location relative to what you are observing, known as your frame of reference.

So the key to avoiding strange causal behaviour (steering the future or rewriting the past) in instances of temporal separation is to accept that calling events 'simultaneous' carries little metaphysical weight.

It is only a frame-specific property, a choice among many alternative but equally viable ones – a matter of convention, or record-keeping.

The lesson carries over directly to both spatial and temporal quantum nonlocality.

Hopefully the temporal entanglement of entire objects is next. Imagine checking out the final episode of a show on your entangled TV, realizing it is terrible, and avoiding the entire series which the studios don't even make because nobody watched it...

Journal Reference
E. Megidish, et al. Entanglement Swapping between Photons that have Never Coexisted Phys. Rev. Lett. 110, 210403 DOI:10.1103/PhysRevLett.110.210403


Original Submission

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 5, Interesting) by hendrikboom on Saturday July 06 2019, @06:35PM (4 children)

    by hendrikboom (1125) Subscriber Badge on Saturday July 06 2019, @06:35PM (#863900) Homepage Journal

    It isn't time that was entangled. It was a bunch of photons and the observers' results that were entangled. Exactly what you'd expect in a setup like this.

    Starting Score:    1  point
    Moderation   +3  
       Interesting=3, Total=3
    Extra 'Interesting' Modifier   0  
    Karma-Bonus Modifier   +1  

    Total Score:   5  
  • (Score: 1, Interesting) by Anonymous Coward on Saturday July 06 2019, @06:55PM (1 child)

    by Anonymous Coward on Saturday July 06 2019, @06:55PM (#863908)

    Has there been any use for these supposed "weird" phenomena yet? How do we know they are interpreting this data correctly?

    • (Score: 2) by Joe Desertrat on Sunday July 07 2019, @10:12PM

      by Joe Desertrat (2454) on Sunday July 07 2019, @10:12PM (#864229)

      Has there been any use for these supposed "weird" phenomena yet? How do we know they are interpreting this data correctly?

      It shouldn't matter. Research for the sake of expanding our knowledge should always be a prime goal. Much of it of course will lead to nothing, but there is always the chance that a major breakthrough will occur. Or, if the results of one of these experiments leads to data that is misinterpreted, well, someone else may look at that data and interpret it correctly, or it might suggest further experiments that do lead to a correct result.

  • (Score: 0) by Anonymous Coward on Saturday July 06 2019, @07:26PM

    by Anonymous Coward on Saturday July 06 2019, @07:26PM (#863916)

    The results were at different times though...

  • (Score: 0) by Anonymous Coward on Saturday July 06 2019, @07:32PM

    by Anonymous Coward on Saturday July 06 2019, @07:32PM (#863917)