Stories
Slash Boxes
Comments

SoylentNews is people

posted by janrinok on Tuesday August 27 2019, @08:51PM   Printer-friendly

Submitted via IRC for SoyCow1984

Identical photons generated 150 million kilometers apart

Up until the mid-20th century, light was pretty ordinary. Yes, it was both a particle and a wave, but it didn't do anything very weird. Then scientists, under-employed after the end of World War II, started paying more attention to the properties of light. This was, in part, driven by the availability of surplus searchlights, which could be turned into cheap arrays of light detectors to measure the properties of stars.

That began the photon gold rush, with scientists identifying all sorts of interesting potential behaviors. But actually observing them would require having rather special light sources, which didn't exist. Now, scientists have shown that our own Sun can be turned into one of these light sources.

When two photons are indistinguishable, they can be made to play some unexpected tricks. The diagram below shows an example: two identical photons hit a partially reflective mirror at the same time. We cannot predict where they will go, but wherever it is, they go together. If the world was classical, we would expect that each behaves independently, and half the time, they would choose different directions. But we're in a quantum world, so this doesn't happen.

This type of interference can only work with identical photons, which is where the special light sources come in. Photons can be distinguished by their color (wavelength), how pure that color is (or more technically, coherence), the orientation of their oscillating electric field (known as polarization), their spatial shape, and their arrival time. Indeed, creating identical photons has, historically, been so difficult that entire lab setups and graduate students were sacrificed to their creation.

But these were single devices that, by their construction, could do nothing other than generate pairs of identical photons. Could two independent devices emit single photons that are identical to each other?

The development of quantum dots made that possible. Quantum dots are what the label on the box says: tiny dots of material that produce quantum behavior by confining a single electron. The confinement restricts the electrons to specific energies; when the electron gets rid of energy, it does so by emitting a photon.

Material scientists have figured out how to make these dots so that they are all almost identical, meaning that the color of the emitted photon is the same. We also know how to place them in surroundings that encourage them to have the same purity, spatial shape, and polarization. Experiments revealed that two quantum dots can, indeed, emit identical photons.

However, this still doesn't quite cut it. We have essentially made two copies of the same device and carefully controlled the environment to ensure that they would naturally produce identical photons. But what about something beyond our control, like the Sun?

This is exactly what a team of researchers has tested. They used a tracking device to continuously capture light from the Sun. That light was filtered to ensure that only photons with the right color, purity, spatial shape, and polarization were saved. These were then sent to a partially reflecting mirror along with light from a quantum dot.

[...] On one level, this is pretty ordinary: quantum mechanics predicts that identical photons will behave a certain way. This experiment effectively takes the countless photons from the Sun and selects only those that are identical to the photons from the quantum dot. We wouldn't expect any other result.

On another level, this is still pretty incredible. To think that we now have the technology to take any old light bulb and turn that into a quantum resource is pretty amazing. The researchers also claim that the quantum properties of single photons from the Sun can be used to throw light on solar processes, like magnetic field behavior. That may be more interesting than any technological application.

Physical Review Letters, 2019, DOI: 10.1103/PhysRevLett.123.080401 (About DOIs)


Original Submission

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 4, Insightful) by Rupert Pupnick on Tuesday August 27 2019, @11:16PM (1 child)

    by Rupert Pupnick (7277) on Tuesday August 27 2019, @11:16PM (#886470) Journal

    Chris Lee seems to be very popular, and for all I know he’s a great physicist and a really nice guy. However, I find in general that his breezy and sensational writing style renders his explanations of “how it works” totally incomprehensible— to me, anyway. There are commenters here in SN who do a much better job explaining physics, IMO.

    Starting Score:    1  point
    Moderation   +2  
       Insightful=2, Total=2
    Extra 'Insightful' Modifier   0  
    Karma-Bonus Modifier   +1  

    Total Score:   4  
  • (Score: 0) by Anonymous Coward on Wednesday August 28 2019, @01:46PM

    by Anonymous Coward on Wednesday August 28 2019, @01:46PM (#886778)

    Better is the synopsis that goes with the paper [aps.org]:

    In 1987, a landmark experiment demonstrated a striking quantum optical effect: When two identical photons simultaneously enter a beam splitter, quantum interference forces both of them to bunch together and always exit from the same beam splitter port. Subsequent variations of the experiment have tested a variety of settings to show that photons from distant sources can show quantum interference. Now, a team of researchers has harnessed sunlight to demonstrate quantum interference between photons generated 150 million km apart, setting the stage for quantum optics experiments on astronomical scales.

    These so-called Hong-Ou-Mandel experiments rely on devices that generate single, identical photons on command. The Sun, however, emits photons across a range of frequencies and polarizations and with uncontrollable arrival times. To turn it into a single-photon source, Chao-Yang Lu, at the University of Science and Technology of China, Shanghai, and colleagues hooked up a solar telescope to a series of fibers, filters, and gratings designed to spit out photons that match those generated by a semiconductor quantum dot in their lab. When they combined the two photon streams in a beam splitter, they found that when photons arrived simultaneously, they exited the same port 90% of the time.

    This observation indicates interference above and beyond that expected from classical physics—showing that thermal light from a natural source can be used in quantum optical experiments. The team went on to generate entangled states between photons from the two disparate sources and demonstrated that such states clearly violated a Bell inequality, a test that unambiguously reveals nonlocal correlation between particles. The results suggest that sunlight could be used as an independent light source in certain quantum encryption schemes, the team says.

    This research is published in Physical Review Letters.

    –Christopher Crockett

    Christopher Crockett is a freelance writer based in Arlington, Virginia.