Stories
Slash Boxes
Comments

SoylentNews is people

posted by janrinok on Monday September 23 2019, @04:27PM   Printer-friendly
from the all-in-a-spin dept.

Submitted via IRC for Bytram

Atoms spin backwards while flying along a surface

Have you ever noticed that when a car is filmed, sometimes the wheels appear to be turning backwards? For cars, having the wheels rotate in the opposite sense to the car's motion is an artifact. But, for atoms, it may actually happen.

Let's set the scene. A flat sheet of metal, hanging in the vacuum: the camera pans to see a single atom moving flat-out a few nanometers above the surface. The electrons surrounding the nucleus of the atom push the electrons in the metal away from the metal's surface, creating a kind of bow wave of charge in front of the nucleus and a wake of charge behind it. What we're looking at is the very picture of a quantum salt flat racer.

The forces that generate the bow wave and wake are carried by virtual photons that are exchanged between the metal surface and the atom. In the exchange process, the atom will emit a steady stream of real photons in the direction of travel. The momentum kick from launching these photons slows the atom. This is, ultimately, friction for a single atom.

The calculation for that scenario is old and only takes into account translational motion. But, the researchers asked themselves, does the atom also rotate? More carefully put, are the forces between the surface and the atom such that they might produce a torque?

The straightforward answer to this is no. Previous calculations showed that the photons emitted by the atom are linearly polarized, which means that they carry no spin momentum. That seemingly rules them out as a source of angular momentum that would spin the atom. If the atom were to start rotating, then something else has to provide the angular momentum. In the quantum world, this can only happen if electrons or photons carry away or deliver some angular momentum.

In this case, the researchers show that photons with spin angular momentum are emitted, meaning the atom has to start rotating to keep everything balanced.

But the equations also show that these photons can only be emitted opposite to the direction that the atom is traveling, which will cause the atom to accelerate. In other words, the atom doesn't just start to rotate, it is also speeds up in the direction of its motion. Indeed, on the face of it, all friction appears to have vanished, which seemed unrealistic.


Original Submission

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 3, Funny) by Hartree on Monday September 23 2019, @07:04PM

    by Hartree (195) on Monday September 23 2019, @07:04PM (#897737)

    "Do your particles lose their flavor in the chamber overnight? Do they enter with a left hand spin and exit with a right?"

    Starting Score:    1  point
    Moderation   +1  
       Funny=1, Total=1
    Extra 'Funny' Modifier   0  
    Karma-Bonus Modifier   +1  

    Total Score:   3