Stories
Slash Boxes
Comments

SoylentNews is people

posted by Fnord666 on Wednesday March 25 2020, @07:57PM   Printer-friendly
from the now-we-can-read-the-fine-print dept.

Arthur T Knackerbracket has found the following story:

Imagine shrinking a microscope, integrating it with a chip and using it to observe inside living cells in real time. Wouldn't it be great if this tiny microscope could also be incorporated into electronic gadgets, in the same way that smartphone cameras are today? What if doctors manage to use such a tool for diagnosis in remote areas without the need for large, heavy and sensitive analysis devices? The EU-funded ChipScope project has made significant progress towards achieving these objectives.

Researchers involved with the EU-funded ChipScope project are now developing a novel strategy to enhance optical microscopy. A news item on the project website states: "In classical optical microscopy, the analyzed sample area is illuminated simultaneously, collecting the light which is scattered from each point with an area-selective detector, e.g. the human eye or the sensor of a camera. In the Chipscope idea instead, a structured light source with tiny, individually addressable elements is utilized."

The same news item notes that "the specimen is located on top of this light source, in close vicinity. Whenever single emitters are activated, the light propagation depends on the spatial structure of the sample, very similar to what is known as shadow imaging in the macroscopic world." An image is created when "the overall amount of light which is transmitted through the sample region is sensed by a detector, activating one light element at a time and thereby scanning across the sample space. If the light elements have sizes in the nanometer regime and the sample is in close contact to them, the optical near field is of relevance and super resolution imaging may become possible with a chip-based setup."

[...] The ChipScope (Overcoming the Limits of Diffraction with Superresolution Lighting on a Chip) project will end in December 2020. Project partners have already developed a prototype of the proposed microscope and hope to present a more powerful version with higher resolution by the end of the project.

Original Source


Original Submission

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 0) by Anonymous Coward on Wednesday March 25 2020, @10:59PM

    by Anonymous Coward on Wednesday March 25 2020, @10:59PM (#975624)

    If not, it won't sell in Korea.