Stories
Slash Boxes
Comments

SoylentNews is people

posted by janrinok on Tuesday April 14 2020, @05:54PM   Printer-friendly
from the can-you-cut-diamonds-with-it? dept.

Team designs carbon nanostructure stronger than diamonds:

Researchers at the University of California, Irvine and other institutions have architecturally designed plate-nanolattices—nanometer-sized carbon structures—that are stronger than diamonds as a ratio of strength to density.

In a recent study in Nature Communications, the scientists report success in conceptualizing and fabricating the material, which consists of closely connected, closed-cell plates instead of the cylindrical trusses common in such structures over the past few decades.

"Previous beam-based designs, while of great interest, had not been so efficient in terms of mechanical properties," said corresponding author Jens Bauer, a UCI researcher in mechanical & aerospace engineering. "This new class of plate-nanolattices that we've created is dramatically stronger and stiffer than the best beam-nanolattices."

According to the paper, the team's design has been shown to improve on the average performance of cylindrical beam-based architectures by up to 639 percent in strength and 522 percent in rigidity.

[...] Bauer said the team's achievement rests on a complex 3-D laser printing process called two-photon polymerization direct laser writing. As a laser is focused inside a droplet of an ultraviolet-light-sensitive liquid resin, the material becomes a solid polymer where molecules are simultaneously hit by two photons. By scanning the laser or moving the stage in three dimensions, the technique is able to render periodic arrangements of cells, each consisting of assemblies of plates as thin as 160 nanometers.

One of the group's innovations was to include tiny holes in the plates that could be used to remove excess resin from the finished material. As a final step, the lattices go through pyrolysis, in which they're heated to 900 degrees Celsius in a vacuum for one hour. According to Bauer, the end result is a cube-shaped lattice of glassy carbon that has the highest strength scientists ever thought possible for such a porous material.

Journal Information:
Cameron Crook et al. Plate-nanolattices at the theoretical limit of stiffness and strength, Nature Communications (2020). DOI: 10.1038/s41467-020-15434-2


Original Submission

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 0) by Anonymous Coward on Wednesday April 15 2020, @04:40AM

    by Anonymous Coward on Wednesday April 15 2020, @04:40AM (#982927)

    It could be used to build a tower though. If you make one 100km tall and launch from the top you reduce your fuel load significantly and you can optimize your engines for use in a vacuum.

    If your navigation is good enough even better would be to use the tower as the pickup point for the pinwheel HiThere suggests. A rotating skyhook is much more achievable anyway, and you still get most of the benefits of an elevator by using solar-powered ion engines at the hub to maintain its orbit. A rotating skyhook also gets you to orbit as fast as a current rocket, an elevator would take days.