Stories
Slash Boxes
Comments

SoylentNews is people

SoylentNews is powered by your submissions, so send in your scoop. Only 15 submissions in the queue.
posted by janrinok on Tuesday April 21 2020, @02:05AM   Printer-friendly

CHEOPS space telescope ready for scientific operation:

A team of scientists, engineers and technicians put CHEOPS through a period of extensive testing and calibration from the beginning of January until the end of March. "We were thrilled when we realized that all the systems worked as expected or even better than expected," explains CHEOPS Instrument Scientist Andrea Fortier from the Univerisity of Bern, who led the commissioning team of the consortium.

The team began by focusing on the evaluation of the photometric performance of the space telescope. CHEOPS has been conceptualized as a device of exceptional precision capable of detecting exoplanets the size of planet Earth. "The most critical test was in the precise measurement of the brightness of a star to a variance of 0.002% (20 parts-per-million)," explains Willy Benz. This precision is required so as to clearly recognize the dimming caused by the passage of an Earth-sized planet in front of a Sun-like star (an event known as a "transit," which can last several hours). CHEOPS was also required to demonstrate its ability to maintain this degree of precision for up to two days.

To verify this, the team focused on a star known as HD 88111. The star is located in the Hydra constellation, some 175 light years away from Earth, and it is not known to host planets. CHEOPS took an image of the star every 30 seconds for 47 consecutive hours (see Figure 1). Every image was carefully analyzed, initially using a specialized automatic software package, and subsequently by the team members, to determine in each image the brightness of the star as accurately as possible. The team had expected the brightness of the star to change during the period of observation due to a variety of effects, such as other stars in the field of view, the tiny jitter motion of the satellite, or the impact of cosmic ray hits on the detector.

The results of the 5,640 photos taken by CHEOPS over 47 hours are shown in Figure 2 as a "light curve." The curve depicts the change over time in the brightness measurements from all the images, showing a root-mean-square scatter of 0.0015% (15 parts-per-million). "The light curve measured by CHEOPS was pleasingly flat. The space telescope easily surpasses the requirement for being able to measure brightness to a precision of 0.002% (20 parts-per-million)," explains Christopher Broeg, Mission Manager for the CHEOPS mission at the University of Bern.

[...] Benz explains that the measurements by CHEOPS are five times more accurate than those from Earth. "That gives us a foretaste for what we can achieve with CHEOPS over the months and years to come," continues Benz.


Original Submission

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 0) by Anonymous Coward on Tuesday April 21 2020, @08:12PM (1 child)

    by Anonymous Coward on Tuesday April 21 2020, @08:12PM (#985542)

    Was going to post something about why this article has nil comments while ole 420 nextdoor got to 14, then i read em and realised here was still a better class of comments.

    I just hope 15ppm really is better than the improvement on 75ppm sounds

  • (Score: 2) by takyon on Tuesday April 21 2020, @09:32PM

    by takyon (881) <takyonNO@SPAMsoylentnews.org> on Tuesday April 21 2020, @09:32PM (#985560) Journal

    There is not much to say about CHEOPS that hasn't been said.

    Maybe it will complete its mission before JWST launches.

    --
    [SIG] 10/28/2017: Soylent Upgrade v14 [soylentnews.org]