Stories
Slash Boxes
Comments

SoylentNews is people

posted by Fnord666 on Monday June 08 2020, @11:46AM   Printer-friendly
from the ubreakable? dept.

Patterned Optical Chips That Emit Chaotic Light Waves Keep Secrets Perfectly Safe:

The one-time pad has proven absolutely unbreakable. Its secrecy rests on a random, single-use private key that must be shared ahead of time between users. However, this key, which needs to be at least as long as the original message, remains difficult to produce randomly and to send securely.

Fratalocchi's team has developed an approach to implement this encryption technique in existing classical optical networks using patterned silicon chips. The researchers patterned the chips with fingerprints to obtain fully chaotic scatterers that cause mixed light waves to travel in a random fashion through these networks. Any modification, even infinitesimal, of the chips generates a scattering structure that is completely uncorrelated to and different from any previous one. Therefore, each user can permanently change these structures after each communication, preventing an attacker from replicating the chips and accessing the exchanged information.

Moreover, these scatterers are in thermodynamic equilibrium with their environment. Consequently, an ideal attacker with an unlimited technological power and abilities to control the communication channel and access the system before or after the communication cannot copy any part of the system without reproducing the surroundings of the chips at the time of the communication.

"Our new scheme is completely unbreakable regardless of the time or the resources available, today or tomorrow," Mazzone says.

Journal Reference: A. Di Falco, V. Mazzone, A. Cruz and A. Fratalocchi, Perfect secrecy cryptography via mixing of chaotic waves in irreversible time-varying silicon chips Nature Communications.
DOI: 10.1038/s41467-019-13740-y


Original Submission

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 0) by Anonymous Coward on Tuesday June 09 2020, @12:51AM (1 child)

    by Anonymous Coward on Tuesday June 09 2020, @12:51AM (#1005050)

    Bi-directional time travel would appear to be infeasible

    There. FTFY.

    Time travel into the future is happening as I type. I'm traveling into the future at ~1 second/second as measured in my reference frame.

    What's more, time travel into the past is theoretically possible [wikipedia.org], but is (currently) far beyond our scientific and technological capabilities. But it is possible, with some restrictions.

  • (Score: 2) by hendrikboom on Tuesday June 09 2020, @11:38AM

    by hendrikboom (1125) Subscriber Badge on Tuesday June 09 2020, @11:38AM (#1005147) Homepage Journal

    That time-travel link was amusing, especially its mention of "classical quantum gravity". "classical" and "quantum" were once opposites!