Stories
Slash Boxes
Comments

SoylentNews is people

posted by Fnord666 on Wednesday July 15 2020, @06:15PM   Printer-friendly
from the remembering-everything dept.

DDR5 Memory Specification Released: Setting the Stage for DDR5-6400 And Beyond

We'll start with a brief look at capacity and density, as this is the most-straightforward change to the standard compared to DDR4. Designed to span several years (if not longer), DDR5 will allow for individual memory chips up to 64Gbit in density, which is 4x higher than DDR4's 16Gbit density maximum. Combined with die stacking, which allows for up to 8 dies to be stacked as a single chip, then a 40 element LRDIMM can reach an effective memory capacity of 2TB. Or for the more humble unbuffered DIMM, this would mean we'll eventually see DIMM capacities reach 128GB for your typical dual rank configuration.

[...] For DDR5, JEDEC is looking to start things off much more aggressively than usual for a DDR memory specification. Typically a new standard picks up from where the last one started off, such as with the DDR3 to DDR4 transition, where DDR3 officially stopped at 1.6Gbps and DDR4 started from there. However for DDR5 JEDEC is aiming much higher, with the group expecting to launch at 4.8Gbps, some 50% faster than the official 3.2Gbps max speed of DDR4. And in the years afterwards, the current version of the specification allows for data rates up to 6.4Gbps, doubling the official peak of DDR4.

Of course, sly enthusiasts will note that DDR4 already goes above the official maximum of 3.2Gbps (sometimes well above), and it's likely that DDR5 will eventually go a similar route. The underlying goal, regardless of specific figures, is to double the amount of bandwidth available today from a single DIMM. So don't be too surprised if SK Hynix indeed hits their goal of DDR5-8400 later this decade.

[...] JEDEC is also using the introduction of the DDR5 memory standard to make a fairly important change to how voltage regulation works for DIMMs. In short, voltage regulation is being moved from the motherboard to the individual DIMM, leaving DIMMs responsible for their own voltage regulation needs. This means that DIMMs will now include an integrated voltage regulator, and this goes for everything from UDIMMs to LRDIMMs.

JEDEC is dubbing this "pay as you go" voltage regulation, and is aiming to improve/simplify a few different aspects of DDR5 with it. The most significant change is that by moving voltage regulation on to the DIMMs themselves, voltage regulation is no longer the responsibility of the motherboard. Motherboards in turn will no longer need to be built for the worst-case scenario – such as driving 16 massive LRDIMMs – simplifying motherboard design and reining in costs to a degree. Of course, the flip side of this argument is that it moves those costs over to the DIMM itself, but then system builders are at least only having to buy as much voltage regulation hardware as they have DIMMs, and hence the PAYGO philosophy.

"On-die ECC" is mentioned in the press release and slides. If you can figure out what that means, let us know.

See also: Micron Drives DDR5 Memory Adoption with Technology Enablement Program

Previously: DDR5 Standard to be Finalized by JEDEC in 2018
DDR5-4400 Test Chip Demonstrated
Cadence and Micron Plan Production of 16 Gb DDR5 Chips in 2019
SK Hynix Announces Plans for DDR5-8400 Memory, and More


Original Submission

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.