Stories
Slash Boxes
Comments

SoylentNews is people

posted by martyb on Saturday August 01 2020, @09:47PM   Printer-friendly
from the how-long-would-it-take-to-flap-its-wings? dept.

[From ESO (European Southern Observatory).]

Stunning Space Butterfly Captured by ESO Telescope:

Resembling a butterfly with its symmetrical structure, beautiful colours, and intricate patterns, this striking bubble of gas — known as NGC 2899 — appears to float and flutter across the sky in this new picture from ESO's Very Large Telescope (VLT). This object has never before been imaged in such striking detail, with even the faint outer edges of the planetary nebula glowing over the background stars.

NGC 2899's vast swathes of gas extend up to a maximum of two light-years from its centre, glowing brightly in front of the stars of the Milky Way as the gas reaches temperatures upwards of ten thousand degrees. The high temperatures are due to the large amount of radiation from the nebula's parent star, which causes the hydrogen gas in the nebula to glow in a reddish halo around the oxygen gas, in blue.

This object, located between 3000 and 6500 light-years away in the Southern constellation of Vela (The Sails), has two central stars, which are believed to give it its nearly symmetric appearance. After one star reached the end of its life and cast off its outer layers, the other star now interferes with the flow of gas, forming the two-lobed shape seen here. Only about 10–20% of planetary nebulae [1] display this type of bipolar shape.

Astronomers were able to capture this highly detailed image of NGC 2899 using the FORS instrument installed on UT1 (Antu), one of the four 8.2-metre telescopes that make up ESO's VLT in Chile. Standing for FOcal Reducer and low dispersion Spectrograph, this high-resolution instrument was one of the first to be installed on ESO's VLT and is behind numerous beautiful images and discoveries from ESO. FORS has contributed to observations of light from a gravitational wave source, has researched the first known interstellar asteroid, and has been used to study in depth the physics behind the formation of complex planetary nebulae.

[...] [1] Unlike what their common name suggests, planetary nebulae have nothing to do with planets. The first astronomers to observe them merely described them as planet-like in appearance. They are instead formed when ancient stars with up to 6 times the mass of our Sun reach the end of their lives, collapse, and blow off expanding shells of gas, rich in heavy elements. Intense ultraviolet radiation energises and lights up these moving shells, causing them to shine brightly for thousands of years until they ultimately disperse slowly through space, making planetary nebulae relatively short-lived phenomena on astronomical timescales.


Original Submission

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 4, Interesting) by aristarchus on Sunday August 02 2020, @01:59AM

    by aristarchus (2645) on Sunday August 02 2020, @01:59AM (#1030124) Journal

    Naked eye astronomy, you pervert! Surely you have heard of the Almagest [wikipedia.org], by Claudius Ptolemy?

    The work was originally titled "Μαθηματικὴ Σύνταξις" (Mathēmatikē Syntaxis) in Ancient Greek, and also called Syntaxis Mathematica in Latin. The treatise was later titled Hē Megalē Syntaxis (Ἡ Μεγάλη Σύνταξις, "The Great Treatise"; Latin: Magna Syntaxis), and the superlative form of this (Ancient Greek: μεγίστη, megiste, "greatest") lies behind the Arabic name al-majisṭī (المجسطي), from which the English name Almagest derives. The Arabic name is important due to the popularity of a Latin translation known as Almagestum made in the 12th century from an Arabic translation, which would endure until original Greek copies resurfaced in the 15th century.

    Now his conception of the universe was completely incorrect, being geo-centric and thus aware that the sun is also not the center of the cosmos, but only a local star, but these things are difficult to theorize, until you have evidence that contradicts your model. Even the computational reasons to abandon geo-centrism, put forth by Copernicus, were not enough; it took the telescopic observations of the moons of Jupiter by Galileo Galilei to really pop the cork on it.

    So what I am saying is that being able to observe non-stellar objects, such as planetary nebula, gaseous nebula, and globular clusters, would have completely changed the astronomy of the ancients, just as it did for the moderns. I have been lucky enough to live long enough to see the changes, and am quite glad I did.

    Starting Score:    1  point
    Moderation   +2  
       Interesting=2, Total=2
    Extra 'Interesting' Modifier   0  
    Karma-Bonus Modifier   +1  

    Total Score:   4