Stories
Slash Boxes
Comments

SoylentNews is people

posted by janrinok on Friday May 29 2015, @01:56PM   Printer-friendly
from the all-charged-up dept.

Chemists at the Waterloo University have discovered the key reaction that takes place in sodium-air batteries that could pave the way for development of the so-called holy grail of electrochemical energy storage.

Unlike the traditional solid-state battery design, a metal-oxygen battery uses a gas cathode that takes oxygen and combines it with a metal such as sodium or lithium to form a metal oxide, storing electrons in the process. Applying an electric current reverses the reaction and reverts the metal to its original form.

In the case of the sodium-oxygen cell, the proton phase catalyst transfers the newly formed sodium superoxide (NaO2) entities to solution where they nucleate into well-defined nanocrystals to grow the discharge product as micron-sized cubes. The dimensions of the initially formed NaO2 are critical; theoretical calculations from a group at MIT has separately shown that NaO2 is energetically preferred over sodium peroxide, Na2O2 at the nanoscale. When the battery is recharged, these NaO2 cubes readily dissociate, with the reverse reaction facilitated once again by the proton phase catalyst.

Chemistry says that the proton phase catalyst could work similarly with lithium-oxygen. However, the lithium superoxide (LiO2) entities are too unstable and convert immediately to lithium peroxide (Li2O2). Once Li2O2 forms, the catalyst cannot facilitate the reverse reaction, as the forward and reverse reactions are no longer the same. So, in order to achieve progress on lithium-oxygen systems, researchers need to find an additional redox mediator to charge the cell efficiently.

Another battery technology "only a few years from the market"?


[Editor's Comment: Original Submission]

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 3, Informative) by AnonTechie on Friday May 29 2015, @08:35PM

    by AnonTechie (2275) on Friday May 29 2015, @08:35PM (#189834) Journal

    New 'designer carbon' boosts battery performance

    Tests were also conducted on lithium-sulfur batteries, a promising technology with a serious flaw: When lithium and sulfur react, they produce molecules of lithium polysulfide, which can leak from the electrode into the electrolyte and cause the battery to fail.

    The Stanford team discovered that electrodes made with designer carbon can trap those pesky polysulfides and improve the battery's performance.

    "We can easily design electrodes with very small pores that allow lithium ions to diffuse through the carbon but prevent the polysulfides from leaching out," Bao said. "Our designer carbon is simple to make, relatively cheap and meets all of the critical requirements for high-performance electrodes."

    http://phys.org/news/2015-05-carbon-boosts-battery.html [phys.org]

    --
    Albert Einstein - "Only two things are infinite, the universe and human stupidity, and I'm not sure about the former."
    Starting Score:    1  point
    Moderation   +1  
       Informative=1, Total=1
    Extra 'Informative' Modifier   0  
    Karma-Bonus Modifier   +1  

    Total Score:   3