Stories
Slash Boxes
Comments

SoylentNews is people

posted by cmn32480 on Tuesday March 21 2017, @03:12PM   Printer-friendly
from the sooner-than-Duke-Nukem-Forever dept.

Intel has released a 3D XPoint drive. It's not vaporware!

The Intel Optane SSD DC P4800X has a write endurance rating of 30 Drive Writes Per Day, and Intel is hopeful that future products can offer even higher ratings once 3D XPoint memory has more broadly proven its reliability. Today's limited release 375GB models have a three year warranty for a total write endurance rating of 12.3 PB, and once the product line is expanded to broad availability of the full range of capacities in the second half of this year the warranty period will be five years.

Intel is offering the 375GB P4800X in PCIe add-in card form factor with a MSRP of $1520 starting today with a limited early-ship program. In Q2 a 375GB U.2 model will ship, as well as a 750GB add-in card. In the second half of the year the rest of the capacity and form factor options will be available, but prices and exact release dates for those models have not been announced. At just over $4/GB the P4800X seems to fall much closer to DRAM than NAND in price, though to be fair the enterprise SSDs it will compete against are all well over $1/GB and the largest DDR4 DIMMs are around $10/GB.

The product is not as fast at sequential transfers as some SSDs:

The raw specs for the P4800X leaked in February. To summarize: it's a datacenter-oriented part, built for applications with high read/write loads, looking for low latency. The sequential transfer rates of 2400MB/s read, 2000MB/s write, are good, but some of the fastest NAND flash can pull slightly ahead. Where the P4800X excels is its ability to sustain high I/O loads, courtesy of those low latencies.

[...] The P4800X can do 550,000 read IOPS and 500,000 write IOPS, but critically, Intel says it achieves this even at low queue depths. The spec sheet figure has a queue depth of 16, and the company says that a queue depth of about 8 tends to be about the limit seen in the real world. Moreover, Intel says that the latency of each I/O operation remains low even under heavy load. 99.999 percent of operations have a read or write latency below 60 or 100 microseconds (respectively) with a queue depth of 1, rising to 150 or 200 microseconds with a queue depth of 16. Under a comparable load, Intel's own P3700 NAND SSD can only serve 99 percent of operations with a latency below about 2,800 microseconds. Likewise, under sustained write workloads, the P4800X retains its low latency for reads, whereas the read latency of the P3700 NAND steadily deteriorates as the write bandwidth increases.


Original Submission

Related Stories

Intel Announces Optane 16 GB and 32 GB M.2 Modules 13 comments

Intel has announced two 3D XPoint products positioned as caches for consumer desktops. The M.2 modules store 16 GB for $44 ($2.75/GB) or 32 GB for $75 ($2.34/GB):

Intel just announced two new products that bring Optane technology to the consumer desktop. Optane is loosely defined as the company's products built with 3D XPoint technology, a next generation non-volatile memory structure built from the ground up to reduce latency. The new Optane Memory products will ship in two capacities (16GB and 32GB) and give users access to a whole new performance tier--as long as you have the supporting technology in place, mainly a 200-series chipset.

Pricing for Optane Memory M.2 2280 modules start at just $44 (16GB) and peak at $75 (32GB). The operating system recognizes the new products as addressable storage, just like a regular hard disk drive or solid-state drive. Intel told us that support for the drives as cache starts with the latest 200-series chipset products that feature an additional four PCI Express lanes over the older 100-series chipset.

The magic happens when you enable a "modified" version of Smart Response Technology and build a cache array with the Optane Memory standing invisibly in front of an HDD or SSD. The Optane Memory becomes a cache device that accelerates I/O for data retained in its memory structure from previous I/O requests.

Compare with the previous story about a 3D XPoint SSD for the enterprise: First Intel Optane 3D XPoint SSD Released: 375 GB for $1520. Many more of us could find $44-75 to blow on this cache.


Original Submission

Intel Announces the Optane SSD 900P: Cheaper 3D XPoint for Desktops 10 comments

Intel has announced new 3D XPoint "Optane" solid state drives at two capacities:

The Intel Optane SSD 900P will come to market in two capacity sizes, 280GB and 480GB. The series uses two form factors, 2.5" U.2 and half-height, half-length add-in card (AIC). This will start to get confusing so look closely. The 280GB will have two 2.5" models on launch day. One comes with a standard U.2 cable and the second comes with an M.2 to U.2 adapter cable. The 480GB will not ship in a 2.5" form factor until a later date. It will ship in the add-in card form factor starting today.

Regardless of the form factor or capacity size, all Optane SSD 900P drives deliver up to 2,500 MBps sequential read and 2,000 MBps sequential write performance. This is lower than some of the other high-performance NVMe SSDs shipping today, but we will address that in the next section. The drives also deliver up to 550,000 random read and 500,000 random write IOPS performance. This is class leading performance, but there is more to the story.

3D XPoint memory performance is closer to the speed of DRAM than NAND used in SSDs. SSD marketing numbers show maximum performance that comes only at high queue depths. Most of us rarely surpass queue depth 4 and the faster the storage, the less likely you are to even build data requests. This memory addresses the problem with performance at usable workloads.

In the chart [here] we have the three fastest Intel consumer storage products from different market segments: SATA SSD, NVMe SSD, and Optane NVMe SSD. We've also added the new Seagate BarraCuda Pro 12TB, the fastest consumer hard disk drive shipping today.

Pricing is $390 for 280 GB, and $600 for 480 GB. That's $1.25/GB for the larger drive, compared to $2.34/GB for the 32 GB Optane Memory M.2 2280 and the launch price of $4.05/GB for the 375 GB Optane SSD DC P4800X (Reviewed here).

3D XPoint is a non-volatile memory/storage technology.

Previously: First Intel Optane 3D XPoint SSD Released: 375 GB for $1520
Intel Announces Optane 16 GB and 32 GB M.2 Modules
Intel Announces "Ruler" Form Factor for Server SSDs


Original Submission

Intel Unveils 58 GB and 118 GB Optane SSDs 10 comments

The Intel Optane SSD 800p (58GB & 118GB) Review: Almost The Right Size

Intel's first Optane products hit the market almost a year ago, putting the much-awaited 3D XPoint memory in the hands of consumers. Today, Intel broadens that family with the Optane SSD 800p, pushing the Optane brand closer to the mainstream.

The new Optane SSD 800p is an M.2 NVMe SSD using Intel's 3D XPoint memory instead of flash memory. The 800p is based on the same hardware platform as last year's Optane Memory M.2 drive, which was intended primarily for caching purposes (but could also be used as a boot drive with a sufficiently small operating system). That means the 800p uses a PCIe 3 x2 link and Intel's first-generation 3D XPoint memory—but more of it, with usable capacities of 58GB and 118GB compared to just 16GB and 32GB from last year's Optane Memory. The PCB layout has been tweaked and the sticker on the drive no longer has a foil layer to act as a heatspreader, but the most significant design changes are to the drive firmware, which now supports power management including a low power idle state.

Prices are $129 and $199.

Also at ZDNet.

Previously: First Intel Optane 3D XPoint SSD Released: 375 GB for $1520
Intel Announces Optane 16 GB and 32 GB M.2 Modules
Intel Announces the Optane SSD 900P: Cheaper 3D XPoint for Desktops


Original Submission

This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
(1)
  • (Score: 2) by richtopia on Tuesday March 21 2017, @06:22PM (2 children)

    by richtopia (3160) on Tuesday March 21 2017, @06:22PM (#482292) Homepage Journal

    My armchair takeaway from reading the two articles:
    1. Optane fits somewhere between DRAM and NAND for almost all statistics (writes/day, latency, and density)
    2. It can be used as a traditional drive, probably for caching or database servers
    3. "Memory Drive Technology" allows it to be used similar to RAM, which could benefit servers requiring lots of memory

    • (Score: 0) by Anonymous Coward on Tuesday March 21 2017, @08:29PM (1 child)

      by Anonymous Coward on Tuesday March 21 2017, @08:29PM (#482374)

      I'd like to think that with improvements and a change in strategy, it could replace a lot of the DRAM tier. Keep a small amount of DRAM around, and minimize writes on the XPoint so that endurance isn't an issue. Keep OS, software, and certain data written permanently. The improvements would need to boost speed closer to DRAM, and increase density for less $/GB.

      Other similar technologies are still being talked about so there may be competition for Intel and Micron.

      • (Score: 1, Interesting) by Anonymous Coward on Wednesday March 22 2017, @03:37AM

        by Anonymous Coward on Wednesday March 22 2017, @03:37AM (#482525)

        When the first announcements came out it looked exactly like a stage in a data storage regimen.

        It looks to fit in like this with a caching style datastore.
        CPU->L1->L2->L3->DRAM->(controller)DRAM->(xpoint here)->(controller)DRAM->SSD->(controller)DRAM->HD

        Now some of those layers can be smashed into each other depending on use case.

        The benchmarks are starting to show up. Basically way better random than flash. With 'okish' linear. Slightly worse perf than DRAM.

        This type of RAM could be very nice in smallish packages where instead of having DRAM and flash they can combine it. For example SoC packages. There are use cases like that but mostly embedded controllers where weight/package size is an issue.

        Still not a bad showing for new v1 memory type. Should be interesting what they can accomplish on subsequent generations.

(1)