Advances may make it easier to build dangerous biological materials from scratch:
In November 2016, virologist David Evans traveled to Geneva for a meeting of a World Health Organization committee on smallpox research. The deadly virus had been declared eradicated 36 years earlier; the only known live samples of smallpox were in the custody of the United States and Russian governments.
Evans, though, had a striking announcement: Months before the meeting, he and a colleague had created a close relative of smallpox virus, effectively from scratch, at their laboratory in Canada. In a subsequent report, the WHO wrote that the team's method "did not require exceptional biochemical knowledge or skills, significant funds, or significant time."
Evans disagrees with that characterization: The process "takes a tremendous amount of technical skill," he told Undark. But certain technologies did make the experiment easier. In particular, Evans and his colleague were able to simply order long stretches of the virus's DNA in the mail, from GeneArt, a subsidiary of Thermo Fisher Scientific.
[...] Whether that's a legitimate cause for alarm is under debate. Some experts say that creating a virus from synthetic DNA remains prohibitively difficult for most scientists, and that fears of an attack are often overblown. At the same time, new nonprofit initiatives, fueled by money from Silicon Valley philanthropists, and at times evoking worst-case scenarios, are pushing for more stringent protections against the misuse of synthetic DNA. Implementing effective security, though, is tough—as is enforcing any kind of norm in a sprawling, multinational industry.
[...] Perhaps the most prominent scientist sounding warnings about the danger of unchecked DNA synthesis is Kevin Esvelt, a biotechnologist at MIT. In conversation, Esvelt moves quickly between technical detail and Cassandra-like alarm. He often talks about Seiichi Endo, a Japanese virologist who, in 1987, joined the apocalyptic Aum Shinrikyo sect. Endo helped carry out a poison gas attack on the Tokyo subway, and the group tried—but seemingly failed—to obtain Ebola virus.
Since then, creating pathogens has gotten easier, thanks in part to the wider availability of synthetic DNA. "It's really hard for me to imagine a graduate-trained virologist from Kyoto University being unable to assemble an influenza virus today," Esvelt said.
[...] Despite these concerns about bioterrorism, the risks remain largely theoretical. Leitenberg, the Maryland biosecurity scholar, began working on biological weapons issues in the 1960s. In a 2005 paper, he argued that people in the field often overstate the risks posed by bioterrorists.
As Leitenberg argues, the U.S. has spent billions of dollars in the past two decades preparing for a bioterrorism attack—but the threat, at least so far, has not materialized. "The real bioterrorists," he said, "still haven't made a single thing." Lab accidents, he argues, pose a far greater risk than a rogue actor.
[...] The new benchtop technology, said Yassif, has the potential to dramatically expand the circle of people with access to custom-made DNA. The technology, she cautioned, is still in its infancy. "I don't think the sky is falling today," Yassif said. But, she added, "I think it's a wakeup call that we need to be thinking about this now, and building in security now."
(Score: 0) by Anonymous Coward on Monday January 02, @03:45AM
"money from Silicon Valley philanthropists" is an oxymoron
they ALWAYS have a motive.