Stories
Slash Boxes
Comments

SoylentNews is people

posted by janrinok on Sunday July 07, @02:03PM   Printer-friendly

Arthur T Knackerbracket has processed the following story:

A research team led by Osaka University discovered that the new organic molecule thienyl diketone shows high-efficiency phosphorescence. It achieved phosphorescence that is more than ten times faster than traditional materials, allowing the team to elucidate this mechanism.

[...] Phosphorescence is a valuable optical function used in applications such as organic EL displays (OLEDs) and cancer diagnostics. Until now, achieving high-efficiency phosphorescence without using rare metals such as iridium and platinum has been a significant challenge. Phosphorescence, which occurs when a molecule transitions from a high-energy state to a low-energy state, often competes with non-radiative processes where the molecule loses energy as heat.

This competition can lead to slow phosphorescence and lower efficiency. While previous research indicated that incorporating certain structural elements into organic molecules could speed up phosphorescence, these efforts have not matched the speed and efficiency of rare metal-based materials.

The research team's breakthrough with the new organic molecule thienyl diketone represents a significant advancement in the field. Yosuke Tani, senior author of the study, remarked, "We discovered this molecule by chance and initially did not understand why it demonstrated such superior performance. However, as our research progressed, we began to connect the pieces and deepen our understanding."

"Our research has led to a clearer understanding of the mechanism behind this molecule's performance than any previous organic phosphorescent material," explains Dr. Tani. "Nonetheless, we believe there is still much to explore, and we are excited about its potential applications."

This research provides new design guidelines for developing organic phosphorescent materials that do not rely on rare metals, offering the potential to surpass and replace these materials in various applications. The findings promise significant advancements in the fields of OLEDs, lighting, and medical diagnostics, among others.

Journal information: Chemical Science

More information: Yosuke Tani et al, Fast, Efficient, Narrowband Room-Temperature Phosphorescence from Metal-Free 1,2-Diketones: Rational Design and Mechanism, Chemical Science (2024). DOI: 10.1039/D4SC02841D


Original Submission

This discussion was created by janrinok (52) for logged-in users only. Log in and try again!
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
(1)
  • (Score: 2) by ChrisMaple on Monday July 08, @02:46AM

    by ChrisMaple (6964) on Monday July 08, @02:46AM (#1363416)

    If I've understood the article and done the math correctly, this new phosphor emits about twice as much light energy in 40 microseconds as does the P31 phosphor familiar from CRT oscilloscopes: 18% efficient versus 9%. However, the new phosphor keeps emitting, reaching 39% in 80 us. Alas, a graph in the article extends the efficiency claim well beyond that last data point. Although the new phosphor is much faster than the reference phosphor in the article, it only falls into the medium-short persistence category.

(1)