Stories
Slash Boxes
Comments

SoylentNews is people

SoylentNews is powered by your submissions, so send in your scoop. Only 19 submissions in the queue.
posted by hubie on Wednesday July 31, @02:40AM   Printer-friendly

Arthur T Knackerbracket has processed the following story:

Researchers have transformed guide RNAs, which direct enzymes, into a smart RNA capable of controlling networks in response to various signals. A research team consisting of Professor Jongmin Kim and Ph.D. candidates Hansol Kang and Dongwon Park from the Department of Life Sciences at POSTECH has developed a multi-signal processing guide RNA.

[...] The CRISPR/Cas system, often referred to as "gene scissors," is a technology capable of editing gene sequences to add or delete biological functions. Central to this technology, which is used in several fields such as treating genetic diseases and genetically engineering crops, is a guide RNA that directs the enzyme to edit the gene sequence at a specific location.

While advances in RNA engineering have spurred research into guide RNAs that respond to biological signals, achieving precise control of networks of genes to respond to multiple signals has remained challenging.

In this study, the team combined the CRISPR/Cas system with biocomputing to overcome these limitations. Biocomputing is a technology that connects biological components like electronic circuits to program cellular and organismal activities.

The researchers implemented a guide RNA gene circuit capable of decision-making based on inputs, similar to a Boolean logic gate, which is one of the fundamental representations of input-output relationships in digitized signal operations.

[...] This study is significant because it integrates existing systems and technologies to precisely control gene networks, enabling the processing, integration, and response to diverse signals within an organism. This goes beyond the role of guide RNAs in merely directing enzymes to specific locations.

Professor Jongmin Kim of POSTECH stated, "The research could enable the precise design of gene therapies based on biological signals within complex genetic circuits involved in disease. RNA molecular engineering allows for the simplicity of software-based structure design which will significantly advance the development of personalized treatments for cancer, genetic disorders, metabolic diseases, and more."

More information: Hansol Kang et al, Logical regulation of endogenous gene expression using programmable, multi-input processing CRISPR guide RNAs, Nucleic Acids Research (2024). DOI: 10.1093/nar/gkae549


Original Submission

This discussion was created by hubie (1068) for logged-in users only, but now has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.