Stories
Slash Boxes
Comments

SoylentNews is people

SoylentNews is powered by your submissions, so send in your scoop. Only 19 submissions in the queue.
posted by janrinok on Sunday June 01 2014, @02:59PM   Printer-friendly
from the it-keeps-getting-more-complicated dept.

Zilong Li and Cosimo Bambi with Fudan University in Shanghai have come up with a very novel idea--those black holes that are believed to exist at the center of a lot of galaxies, may instead by wormholes. They've written a paper [abstract], uploaded to the preprint server arXiv, describing their idea and how what they've imagined could be proved right (or wrong) by a new instrument soon to be added to an observatory in Chile.

From the article:

Back in 1974, space scientists discovered Sagittarius A* (SgrA*) - bright source of radio waves emanating from what appeared to be near the center of the Milky Way galaxy. Subsequent study of the object led scientists to believe that it was (and is) a black hole - the behavior of stars nearby, for example, suggested it was something massive and extremely dense.

What we're able to see when we look at SgrA* are plasma gasses near the event horizon, not the object itself as light cannot escape. That should be true for wormholes too, of course, which have also been theorized to exist by the Theory of General Relativity. Einstein even noted the possibility of their existence. Unfortunately, no one has ever come close to proving the existence of wormholes, which are believed to be channels between different parts of the universe, or even between two universes in multi-universe theories. In their paper, Li and Bambi suggest that there is compelling evidence suggesting that many of the objects we believe to be black holes at the center of galaxies, may in fact be wormholes.

Plasma gases orbiting a black hole versus a wormhole should look different to us, the pair suggest, because wormholes should be a lot smaller. Plus, the presence of wormholes would help explain how it is that even new galaxies have what are now believed to be black holes - such large black holes would presumably take a long time to become so large, so how can they exist in a new galaxy? They can't Li and Bambi conclude, instead those objects are actually wormholes, which theory suggests could spring up in an instant, and would have, following the Big Bang.

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 1, Interesting) by Anonymous Coward on Sunday June 01 2014, @10:02PM

    by Anonymous Coward on Sunday June 01 2014, @10:02PM (#50007)

    Both ends would just be a black hole, so a nice big black hole with a highly disturbed galaxy orbiting around it.

    Entertainingly, that's actually supposition -- good luck calculating what happens when black holes collide. We can basically do it, but we're always rather inhibited by concepts such as an "event horizon". The problem is that an event horizon is total, but grows as a black hole takes in mass, which unfortunately means that something which at time x is well outside what looks like the event horizon is in fact well inside the event horizon as seen from x + 100000000 years. This has a... complicating effect on simulations, which are also somewhat hindered by the tendency of your grids to fall into the black hole.

    We also have no idea what would happen if two singularities crashed, not least since we can't model a singularity anyway, by definition. What to my mind would be even more fascinating would be to take one Schwarzschild hole (spherical, non-rotating) and smash a Kerr hole (non-spherical, rotating) into it. This is fascinating because the internals are totally different: a Schwarzschild hole has that famous inevitable singularity lurking greedily in your future; but a *Kerr* hole's singularity is both cylindrical with a nice friendly hole in the middle of it, and doesn't lurk inevitably in your future anyway. On the diagrams (Schwarzschild: http://online.kitp.ucsb.edu/online/colloq/hamilton1/oh/penrose_Schwpar.gif [ucsb.edu] Kerr: http://www.phys.utk.edu/daunt/Astro/Overheads/BH/Penrose%20Rotating%20BH.jpg [utk.edu]) the Schwarzschild singularity is horizontal, and since all motion has to be in lines 45 degrees from vertical and moving upwards, you're fucked. This is a "spacelike" singularity since it cuts across timelike motion. The Kerr singularity, on the other hand, is vertical, and we can easily see that if we're clever we can avoid it, particularly given the hole in its insides. Of course, have fun trying to navigate inside a black hole and rather you than me because not just your sense of direction but your very sense of *dimension* will be fucked up, but even so. The interest would be what happens? The Kerr hole will evidently disrupt the Schwarzschild geometry such that it can't be Schwarzschild anymore, that's straightforward, and the end result will be another Kerr hole, through conservation of angular momentum if nothing else, but how does it get there? What happens to the singularities? How do they restructure themselves? What would happen if we smacked a Schwarzschild hole with *two* counter-rotating Kerr holes? Or, even better, with six of them, keeping all possible isotropy?

    So far as I know, these questions are unanswerable except that we basically know the starting and ending states. It doesn't help that as soon as you fire a Kerr hole at a Schwarzschild you can't use *either* solution and have to model it numerically. (Both Schwarzschild and Kerr are global; they assume there is no other gravitating matter in the universe.)

    Something else along the same lines would be to take a Schwarzschild hole, and then fire an electron into it, dead at the centre. This imaprts a charge. A *charged* spherical black hole is a Reisser-Noerdstrom hole, and internally it looks a lot like Kerr. The singularity isn't cylindrical but it also isn't inevitable. So firing that one electron into the hole has totally rearranged the hole's insides. How about firing it in off-centre? Then the hole picks up a tiny angular momentum along with its tiny charge, and becomes what is known as a Kerr-Newman -- charged and rotating. The insides are basically identical to a Kerr with unimportant differences, but again the fundamental nature of the hole has changed.

    I think the thing to take away from this is that if we're under attack from aliens using a wormhole we should just squirt a few electrons into it and that's their wormhole fucked. Unless they're instead navigating inside a Kerr and coming from that weird patch of space with a naked singularity glowing in the middle (which the diagram above is slightly oddly calling an "antigravity universe" and I'm not totally sure why), in which case we can just chuck rubbish into it against the spin until it balances, and then that's their wormhole dead.

    Starting Score:    0  points
    Moderation   +1  
       Interesting=1, Total=1
    Extra 'Interesting' Modifier   0  

    Total Score:   1  
  • (Score: 0) by Anonymous Coward on Monday June 02 2014, @11:58AM

    by Anonymous Coward on Monday June 02 2014, @11:58AM (#50162)

    Something else along the same lines would be to take a Schwarzschild hole, and then fire an electron into it, dead at the centre. This imaprts a charge. A *charged* spherical black hole is a Reisser-Noerdstrom hole, and internally it looks a lot like Kerr. The singularity isn't cylindrical but it also isn't inevitable. So firing that one electron into the hole has totally rearranged the hole's insides. How about firing it in off-centre? Then the hole picks up a tiny angular momentum along with its tiny charge, and becomes what is known as a Kerr-Newman -- charged and rotating. The insides are basically identical to a Kerr with unimportant differences, but again the fundamental nature of the hole has changed.

    Actually, the electron has an intrinsic angular momentum (spin!), therefore even a centrally falling electron will give the black hole an angular momentum. BTW, from a quantum mechanical point of view, you'll change it from a bosonic to a fermionic black hole (assuming those terms make actually sense for black holes).

    Another interesting fact is that the gyromagnetic ratio of a charged black hole is 2, just as for an electron (without QED corrections, but then, the black hole gyromagnetic ratio is calculated without QED corrections ass well). Now if you assume the electron were a black hole, what would be its radius? Well, it turns out the electron violates the restrictions for charged black holes; a Reisser-Noerdstrom solution for those parameters would be a naked singularity.

    Maybe if we want to know what the interior of a black hole really looks like, we have to look no further than to the electron.

    • (Score: 0) by Anonymous Coward on Monday June 02 2014, @08:20PM

      by Anonymous Coward on Monday June 02 2014, @08:20PM (#50391)

      "Actually, the electron has an intrinsic angular momentum (spin!), therefore even a centrally falling electron will give the black hole an angular momentum. BTW, from a quantum mechanical point of view, you'll change it from a bosonic to a fermionic black hole (assuming those terms make actually sense for black holes)."

      Ah, but as I suspect you know we'd need a quantum theory of gravity to know how the spin of an electron would interact with the spin of a black hole - they're related, but distinct, concepts. I've no doubt that in a quantum description of a black hole whatever the quantum analogue of the hole's angular momentum is would interact with the spin angular momentum of the electron, but I'm not feeling up to speculating just how at the minute. (It's possible that people working on loop quantum gravity have an idea. Alas, I don't know all that much about loop quantum. My impression is both that it's still hard to add matter into the theory, and also that the hole solution they have is Schwarzschild only, but I'm years out of date.)