Stories
Slash Boxes
Comments

SoylentNews is people

posted by martyb on Wednesday December 20 2017, @11:27AM   Printer-friendly
from the say-hi-to-Vir-Cotto-for-me dept.

NASA thinks that the technologies needed to launch an interstellar probe to Alpha Centauri at a speed of up to 0.1c could be ready by 2069:

In 2069, if all goes according to plan, NASA could launch a spacecraft bound to escape our solar system and visit our next-door neighbors in space, the three-star Alpha Centauri system, according to a mission concept presented last week at the annual conference of the American Geophysical Union and reported by New Scientist. The mission, which is pegged to the 100th anniversary of the moon landing, would also involve traveling at one-tenth the speed of light.

Last year, Representative John Culberson called for NASA to launch a 2069 mission to Alpha Centauri, but it was never included in any bill.

Meanwhile, researchers have analyzed spectrographic data for the Alpha Centauri system and found that small, rocky exoplanets are almost certainly undiscovered due to current detection limits:

The researchers set up a grid system for the Alpha Centauri system and asked, based on the spectrographic analysis, "If there was a small, rocky planet in the habitable zone, would we have been able to detect it?" Often, the answer came back: "No."

Zhao, the study's first author, determined that for Alpha Centauri A, there might still be orbiting planets that are smaller than 50 Earth masses. For Alpha Centauri B there might be orbiting planets than are smaller than 8 Earth masses; for Proxima Centauri, there might be orbiting planets that are less than one-half of Earth's mass.

In addition, the study eliminated the possibility of a number of larger planets. Zhao said this takes away the possibility of Jupiter-sized planets causing asteroids that might hit or change the orbits of smaller, Earth-like planets.

(For comparison, Saturn is ~95 Earth masses, Neptune is ~17, Uranus is ~14.5, and Mars is ~0.1.)

Also at BGR and Newsweek.

Planet Detectability in the Alpha Centauri System (DOI: 10.3847/1538-3881/aa9bea) (DX)


Original Submission

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 2) by c0lo on Thursday December 21 2017, @01:17AM (1 child)

    by c0lo (156) Subscriber Badge on Thursday December 21 2017, @01:17AM (#612657) Journal

    You can also turn a lot of that incredible tensile strength into rigidity by spin-stabilizing it

    Spin stabilisation is a nice.... ummm... twist, so to speak ;)
    Except...

    with only at 0.33 nm thickness so we've got plenty of overhead to work with to make it more reflective and/or larger.

    We'll need that overhead and something more. At 0.33nm, the sail will be transparent for light.
    Even a metallic film will be transparent - has to do with the skip depth [wikipedia.org] - the depth on which the electric/magnetic field intensity drops to e-1 in a bulk conductor. Optimally, you need something on the order of λ/2 film thickness to maximize the reflection by constructive interference [wikipedia.org] - so you'd be playing in the hundred nanometers range . You may go suboptimal, but in any case not to the level of 0.33nm; at that thickness, the light simply "flows" through the sail as if the sail is non existent.

    the sensor package micro-probe

    Microsensors are fine.
    What is not fine at the micro dimension is the "call-home" feature. 'Cause we do want to get some info back from that probe, something that's not drowned by the EM emission of 3 starts - one of which is a red dwarf, cooler, emitting with peaks IR and microwave.
    If any of the planets there has atmosphere and auroras, that'll be another source of noise in longer range RF.

    --
    https://www.youtube.com/watch?v=aoFiw2jMy-0 https://soylentnews.org/~MichaelDavidCrawford
    Starting Score:    1  point
    Karma-Bonus Modifier   +1  

    Total Score:   2  
  • (Score: 2) by Immerman on Thursday December 21 2017, @02:57PM

    by Immerman (3985) on Thursday December 21 2017, @02:57PM (#612806)

    Actually, a single layer of graphene blocks ~2.5% of light, pretty much across the spectrum, and the effect stacks - so at 10nm (30 layers) you're blocking ~53%. Working out something more opaque (and reflective rather than absorbent) will no doubt be a challenge. We'll have to see see what material scientists can accomplish given a motive.

    Transmission will indeed be a challenge, I've got no answers for that, except that RF is almost certainly out - as you say, there's not really any quiet place in the spectrum. I'd bet on a carefully tuned laser myself. And that communication would be strictly one-way - With the mass and power constraints I'd expect it'd be nigh-impossible for it to detect an interstellar signal. Though... perhaps the launching laser could be tuned and modulated to be readily detected at that distance.

    And hey, even if we never heard back from the probe itself, we'd now have a big honking launching laser that would be of great help for moving stuff around the solar system as well...