Stories
Slash Boxes
Comments

SoylentNews is people

posted by janrinok on Friday April 20 2018, @06:12PM   Printer-friendly
from the refried-space-beans dept.

NASA is going back to the Moon, perhaps permanently, as seen in a new road map (image):

Four months after President Trump directed NASA to return to the Moon, the agency has presented a road map to meet the goals outlined in Space Policy Directive-1. The updated plan shifts focus from the previous "Journey to Mars" campaign back to the Moon, and—eventually—to the Red Planet.

"The Moon will play an important role in expanding human presence deeper into the solar system," said Bill Gerstenmaier, associate administrator of the Human Exploration and Operations Mission Directorate at NASA, in a release issued by the agency.

While the revamped plan may share the same destination as the Apollo program, NASA said it will approach the return in a more measured and sustainable manner. Unlike humanity's first trip to the Moon, the journey back will incorporate both commercial and international partners.

To achieve this, NASA has outlined four strategic goals:

  • Transition low-Earth orbit (LEO) human spaceflight activities to commercial operators.
  • Expand long-duration spaceflight activities to include lunar orbit.
  • Facilitate long-term robotic lunar exploration.
  • Use human exploration of the Moon as groundwork for eventual human missions to Mars and beyond.

This may be the best outcome for the space program. Let NASA focus on the Moon with an eye towards permanently stationing robots and humans there, and let SpaceX or someone else take the credit for a 2020s/early-2030s manned Mars landing. Then work on a permanent presence on Mars using cheaper rocket launches, faster propulsion technologies, better radiation shielding, hardier space potatoes, etc.

Previously: President Trump Signs Space Policy Directive 1

Related:


Original Submission

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 3, Informative) by bob_super on Friday April 20 2018, @07:18PM (3 children)

    by bob_super (1357) on Friday April 20 2018, @07:18PM (#669774)

    > radiation protection equivalent to the ISS

    We do need more, given that ISS is protected by the Earth.
    Also, a moon base is in the sun continuously for 2 weeks, unless buried, followed by 2 weeks of extreme cold. The thermal inertia that helps protect your metals from degradation during 92-minute orbits will not be there.

    Starting Score:    1  point
    Moderation   +1  
       Informative=1, Total=1
    Extra 'Informative' Modifier   0  
    Karma-Bonus Modifier   +1  

    Total Score:   3  
  • (Score: 3, Informative) by turgid on Friday April 20 2018, @08:01PM (2 children)

    by turgid (4318) Subscriber Badge on Friday April 20 2018, @08:01PM (#669788) Journal

    I seem to remember Chris Hadfield stating that ISS astronauts get 100 mSv of radiation in 6 months on the ISS. When I worked in the British nuclear industry many years ago, the legal dose limit for radiation workers was 50 mSv a year, then reduced to 35 mSv/year. I worked in the industry for nearly 5 years, including working directly on a nuclear reactor. I got 1.5 mSv total occupational dose over that time (5 years). Natural background in that area was about 1 mSv/year. In some places it can be much higher.

    • (Score: 0) by Anonymous Coward on Friday April 20 2018, @09:00PM (1 child)

      by Anonymous Coward on Friday April 20 2018, @09:00PM (#669813)

      Assuming bursts of extreme exposure, or maximum safe continuous explosure ever?

      It is possible the nuclear industry had lower limits to account for the possibility of risk of higher exposures, while the astronauts don't because radiation exposure is usually consistent/forecastable and leave more cushion as a result.

      The other possibility of course is that is simply an average safe value for astronauts based on practicality and that they limit missions based on that amount plus routine physicals to check for health effects.

      • (Score: 3, Interesting) by turgid on Friday April 20 2018, @09:24PM

        by turgid (4318) Subscriber Badge on Friday April 20 2018, @09:24PM (#669818) Journal

        The mathematical models for risk to health from radiation exposure were pretty crude due to lack of data. Basically, at one end of the scale they had Hiroshima and Nagasaki and at the other end the general population subjected to natural background in various regions. They drew a straight line from zero to nuclear war and interpolated. As time went on and the science became better, people were better placed to consider questions such as yours. Sometimes a big dose of something like gamma rays isn't that bad. Neutrons are the nasty ones. You don't want to breath in or eat alphas or betas. I don't know what the current thinking is. We had a simple mantra: time, distance and shielding.