NASA is going back to the Moon, perhaps permanently, as seen in a new road map (image):
Four months after President Trump directed NASA to return to the Moon, the agency has presented a road map to meet the goals outlined in Space Policy Directive-1. The updated plan shifts focus from the previous "Journey to Mars" campaign back to the Moon, and—eventually—to the Red Planet.
"The Moon will play an important role in expanding human presence deeper into the solar system," said Bill Gerstenmaier, associate administrator of the Human Exploration and Operations Mission Directorate at NASA, in a release issued by the agency.
While the revamped plan may share the same destination as the Apollo program, NASA said it will approach the return in a more measured and sustainable manner. Unlike humanity's first trip to the Moon, the journey back will incorporate both commercial and international partners.
To achieve this, NASA has outlined four strategic goals:
- Transition low-Earth orbit (LEO) human spaceflight activities to commercial operators.
- Expand long-duration spaceflight activities to include lunar orbit.
- Facilitate long-term robotic lunar exploration.
- Use human exploration of the Moon as groundwork for eventual human missions to Mars and beyond.
This may be the best outcome for the space program. Let NASA focus on the Moon with an eye towards permanently stationing robots and humans there, and let SpaceX or someone else take the credit for a 2020s/early-2030s manned Mars landing. Then work on a permanent presence on Mars using cheaper rocket launches, faster propulsion technologies, better radiation shielding, hardier space potatoes, etc.
Previously: President Trump Signs Space Policy Directive 1
Related:
Moon Base Could Cost Just $10 Billion Due to New Technologies
Should We Skip Mars for Now and Go to the Moon Again?
NASA and International Partners Planning Orbital Lunar Outpost
How to Get Back to the Moon in 4 Years, Permanently
NASA Eyeing Mini Space Station in Lunar Orbit as Stepping Stone to Mars
Private Company Plans to Bring Moon Rocks Back to Earth in Three Years
NASA and Roscosmos Sign Joint Statement on the Development of a Lunar Space Station
India and Japan to Collaborate on Lunar Lander and Sample Return Mission
Russia Assembles Engineering Group for Lunar Activities and the Deep Space Gateway
Can the International Space Station be Saved? Should It be Saved?
Trump Administration Plans to End Support for the ISS by 2025
25 NASA Innovative Advanced Concepts Selected for 2018
Lunar X Prize Could Continue Without Google, or Even the Prizes
(Score: 2) by Immerman on Saturday April 21 2018, @03:09AM
Nope - on Mars rescue is either waiting on the launch pad, or it's not coming. You need to refuel on the surface to take off - unless you have large fuel reserves but no rocket (why?) there'd be nothing Earth could do to help. Emergency resupply is 3-24 months away, depending on orbital alignment and how much your support base on Earth is willing to pay, but rescue is on you.
And yeah, I suppose there's a few essential things that could go so wrong you couldn't fix them on your own, but not bad enough to keep you from surviving for a week. Probably a pretty short list though. Especially since it's mostly ecosystem failures that could kill you, and on Mars you've got all those raw materials to replace ecosystem as fast as your microbial bioslurry can breed - I would assume your "baseline" ecosystem would be microbial (with frozen backups) with more sophisticated/nonessential things growing in the resulting biomass - just like on Earth. Far more fault-tolerant that way.
I really doubt we'll be building rockets on the moon though, not anytime in the next several decades anyway - you need a pretty sophisticated industrial base for that. At least for the sort of rocket that's efficient enough for interplanetary trips with a substantial payload. And it doesn't much matter where you launch from, you're going to want to refuel in orbit for an interplanetary voyage. Meanwhile, pretty much everything you're carrying is going to have to originate from Earth anyway as well - and landing on the moon and taking off again is going to be a lot riskier than just refueling from a couple more tankers in orbit. About the only thing the moon is likely to offer in the next several decades is fuel: hard to screw up, and can be made with equipment imported from Earth - unlike rockets where the manufacturing equipment tends to dramatically outweigh the rocket, especially since you need to produce the entire supply chain from local raw materials or it defeats the point.
But yeah, the first few waves of Mars colonists are likely to have pretty high fatality rates. Moon colonists too for that matter, though maybe not quite as bad - at the very least there's a much better chance of medical evacuation for serious conditions. But that's pretty much always been the case for colonization - new locations bring new threats, and unless there's friendly natives willing to hold your hand through the adjustment period (and probably even then) a lot of people are going to die. (And if there *are* friendly natives, then it's not really colonization so much as immigration or conquest). That's why it's always the dreamers and malcontents in the first waves - those for whom the high likelyhood of an early grave is an acceptable price to pay for new horizons.