NASA is going back to the Moon, perhaps permanently, as seen in a new road map (image):
Four months after President Trump directed NASA to return to the Moon, the agency has presented a road map to meet the goals outlined in Space Policy Directive-1. The updated plan shifts focus from the previous "Journey to Mars" campaign back to the Moon, and—eventually—to the Red Planet.
"The Moon will play an important role in expanding human presence deeper into the solar system," said Bill Gerstenmaier, associate administrator of the Human Exploration and Operations Mission Directorate at NASA, in a release issued by the agency.
While the revamped plan may share the same destination as the Apollo program, NASA said it will approach the return in a more measured and sustainable manner. Unlike humanity's first trip to the Moon, the journey back will incorporate both commercial and international partners.
To achieve this, NASA has outlined four strategic goals:
- Transition low-Earth orbit (LEO) human spaceflight activities to commercial operators.
- Expand long-duration spaceflight activities to include lunar orbit.
- Facilitate long-term robotic lunar exploration.
- Use human exploration of the Moon as groundwork for eventual human missions to Mars and beyond.
This may be the best outcome for the space program. Let NASA focus on the Moon with an eye towards permanently stationing robots and humans there, and let SpaceX or someone else take the credit for a 2020s/early-2030s manned Mars landing. Then work on a permanent presence on Mars using cheaper rocket launches, faster propulsion technologies, better radiation shielding, hardier space potatoes, etc.
Previously: President Trump Signs Space Policy Directive 1
Related:
Moon Base Could Cost Just $10 Billion Due to New Technologies
Should We Skip Mars for Now and Go to the Moon Again?
NASA and International Partners Planning Orbital Lunar Outpost
How to Get Back to the Moon in 4 Years, Permanently
NASA Eyeing Mini Space Station in Lunar Orbit as Stepping Stone to Mars
Private Company Plans to Bring Moon Rocks Back to Earth in Three Years
NASA and Roscosmos Sign Joint Statement on the Development of a Lunar Space Station
India and Japan to Collaborate on Lunar Lander and Sample Return Mission
Russia Assembles Engineering Group for Lunar Activities and the Deep Space Gateway
Can the International Space Station be Saved? Should It be Saved?
Trump Administration Plans to End Support for the ISS by 2025
25 NASA Innovative Advanced Concepts Selected for 2018
Lunar X Prize Could Continue Without Google, or Even the Prizes
(Score: 2) by Immerman on Sunday April 22 2018, @03:31PM
As I said, certainly you *could* stack them like cordwood to get enough power, but that's a lot of individual reactors to deal with.
They key words in your quote are "exploration missions".
There's minimal point in a lunar outpost for pure exploration missions - if we go to the immense expense of building an outpost, rather than just landing mobile "exploratory RVs" it should something useful with long term potential, both for the benefit of Earth's space program, and to practice and develop technologies for the much richer targets of Mars and the asteroids. And serve as a meaningful hub for more far-reaching lunar exploration.
And the benefits could be immense - it's a big dead rock in nearby space with enough gravity to be useful, and 25x the estimated combined mass of the asteroid belt. Admittedly without the asteroids' convenient material concentration or high surface-to-volume ratios, but rocket fuel and radiation shielding are going to be two of the most valuable bulk materials in orbit as we start to get serious about establishing a presence in space. And we pretty much have the technology to start producing those *now*, we just have to get a suitable outpost established on the moon. After all, it's not like we have to produce enough fuel and fuel Heinlein's Armada immediately - a comparative trickle of fuel would be more than sufficient to make much more capable exploratory missions to the outer solar system trivial (or alternatively, similarly capable using much cruder/heavier/cheaper technology) , as well as sending your lunar "RVs" on suborbital hops to whatever locations you want to study this month.
And since you'll be landing rockets on the moon regularly for supplies, you may as well be able to top off the tanks and haul a bunch of shielding and fuel into orbit on their return journey, instead of flying back basically empty. Pretty much the same expense either way, and it'd be nice to has some orbital research stations that don't require the residents to irradiate themselves as the cost of doing business. It'd certainly be nice to start distinguishing the health problems due to freefall from those due to radiation exposure and/or constantly traveling through the Earth's magnetic field at immense speed.