Stories
Slash Boxes
Comments

SoylentNews is people

posted by janrinok on Thursday June 07 2018, @06:53PM   Printer-friendly
from the begun-the-core-wars-have dept.

AMD released Threadripper CPUs in 2017, built on the same 14nm Zen architecture as Ryzen, but with up to 16 cores and 32 threads. Threadripper was widely believed to have pushed Intel to respond with the release of enthusiast-class Skylake-X chips with up to 18 cores. AMD also released Epyc-branded server chips with up to 32 cores.

This week at Computex 2018, Intel showed off a 28-core CPU intended for enthusiasts and high end desktop users. While the part was overclocked to 5 GHz, it required a one-horsepower water chiller to do so. The demonstration seemed to be timed to steal the thunder from AMD's own news.

Now, AMD has announced two Threadripper 2 CPUs: one with 24 cores, and another with 32 cores. They use the "12nm LP" GlobalFoundries process instead of "14nm", which could improve performance, but are currently clocked lower than previous Threadripper parts. The TDP has been pushed up to 250 W from the 180 W TDP of Threadripper 1950X. Although these new chips match the core counts of top Epyc CPUs, there are some differences:

At the AMD press event at Computex, it was revealed that these new processors would have up to 32 cores in total, mirroring the 32-core versions of EPYC. On EPYC, those processors have four active dies, with eight active cores on each die (four for each CCX). On EPYC however, there are eight memory channels, and AMD's X399 platform only has support for four channels. For the first generation this meant that each of the two active die would have two memory channels attached – in the second generation Threadripper this is still the case: the two now 'active' parts of the chip do not have direct memory access.

This also means that the number of PCIe lanes remains at 64 for Threadripper 2, rather than the 128 of Epyc.

Threadripper 1 had a "game mode" that disabled one of the two active dies, so it will be interesting to see if users of the new chips will be forced to disable even more cores in some scenarios.


Original Submission

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 2) by Freeman on Friday June 08 2018, @05:36PM

    by Freeman (732) on Friday June 08 2018, @05:36PM (#690415) Journal

    I'm not sure what the real bottleneck for performance on my current machine is, but I'm thinking its' got a whole lot more to do with developers who can't code a stable piece of software. As opposed to them legitimately maxing out my CPU, RAM or GPU. Could be that my 8GB RX480 is having issues, but I doubt it. I also got way more RAM than I will need for the foreseeable future. VR does demand a bit more CPU, RAM, and GPU power due to the nature of the beast. No one's really taking advantage of my 8-core CPU, though.

    SSDs makes loading anything feel more snappy. Comparing a HDD to a SSD is like comparing a VHS to a DVD. There's a vast improvement in performance when upgrading to a SSD. That would be the single best thing to upgrade, if you want to feel like you're going to make a serious impact on your PC performance.

    Faster RAM is notable, but probably not very noticeable when you go from 2400 to 3200mhz. You just won't see that much of a performance gain. Going from 4GB to 8GB of RAM could on the other hand make a much bigger impact, if you don't have enough to keep the 5,000 tabs up in your Browser of choice.

    GPU upgrade from 128-bit to 256-bit, or 256-bit to 512-bit will typically be a major improvement over the previous GPU. There are other factors like how much RAM is on the card and speed of the card, but the higher bandwidth cards usually follow an upward trend regarding those things.

    Also, regarding Multiplayer performance. Sometimes you just need a faster internet connection, though latency is a key issue. Other times it's down to the software developers that can't code.

    Minor jump in CPU performance? Bottom of the list of "Maybe this will help my computer run faster".

    --
    Joshua 1:9 "Be strong and of a good courage; be not afraid, neither be thou dismayed: for the Lord thy God is with thee"
    Starting Score:    1  point
    Karma-Bonus Modifier   +1  

    Total Score:   2