Stories
Slash Boxes
Comments

SoylentNews is people

posted by Fnord666 on Wednesday June 13, @01:49PM   Printer-friendly
from the he-ain't-heavy-he's-my-nucleus dept.

Nobelium — element number 102 on the periodic table — has an atomic nucleus that is deformed into the shape of an American football, scientists report in the June 8 Physical Review Letters. The element is the heaviest yet to have its nucleus sized up.

By probing individual nobelium atoms with a laser, the team gauged the oblong shape of three nobelium isotopes: nobelium-252, -253 and -254. These different forms of the element each contain 102 protons, but varying numbers of neutrons. The shape is not uncommon for nuclei, but the researchers also determined that nobelium-252 and -254 contain fewer protons in the center of the nucleus than the outer regions — a weird configuration known as a “bubble nucleus” (SN: 11/26/16, p. 11).

The measurements are in agreement with previous theoretical predictions. “It nicely confirms what we believe,” says study coauthor Witold Nazarewicz, a theoretical nuclear physicist at Michigan State University in East Lansing.

Elements heavier than uranium, number 92, aren’t found in significant quantities in nature, and must be created artificially. Currently, the heaviest element on the periodic table is number 118, oganesson (SN Online: 2/12/18). But scientists hope to go even bigger, in search of a potential “island of stability,” a proposed realm in which elements are more stable than other heavy elements.

While many superheavy elements decay in just fractions of a second, some theoretical calculations suggest that elements inhabiting this proposed hinterland might persist longer, making them easier to study. Better understanding the heaviest known elements, including the shape of their atomic nuclei, could help scientists gauge what lies just out of reach.


Original Submission

 

Reply to: Elements

    (Score: 2) by ledow on Wednesday June 13, @02:40PM

    by ledow (5567) on Wednesday June 13, @02:40PM (#692344) Homepage

    I would imagine that, if it were possible for some super-heavy element to be stable for even a useful amount of time, that stars and universe-forming and whatever else goes on outside of Earth would have made them and, being stable, they would have survived.

    Especially if there's a "range" of super-heavy elements that very, very, very slowly degrade only into each other.

    If it was stable, it'd still be around. And pretty much there's nothing to indicate that the trend is anything but shorter-and-shorter half-lives.

    Even if you find a semi-stable one (hours, days, weeks, months), it's not going to be all that useful to you except to say "told you so".

Post Comment

Edit Comment You are not logged in. You can log in now using the convenient form below, or Create an Account, or post as Anonymous Coward.

Public Terminal

Anonymous Coward [ Create an Account ]

Use the Preview Button! Check those URLs!


Logged-in users aren't forced to preview their comments. Create an Account!

Allowed HTML
<b|i|p|br|a|ol|ul|li|dl|dt|dd|em|strong|tt|blockquote|div|ecode|quote|sup|sub|abbr|sarc|sarcasm|user|spoiler|del|s|strike>

URLs
<URL:http://example.com/> will auto-link a URL

Important Stuff

  • Please try to keep posts on topic.
  • Try to reply to other people's comments instead of starting new threads.
  • Read other people's messages before posting your own to avoid simply duplicating what has already been said.
  • Use a clear subject that describes what your message is about.
  • Offtopic, Inflammatory, Inappropriate, Illegal, or Offensive comments might be moderated. (You can read everything, even moderated posts, by adjusting your threshold on the User Preferences Page)
  • If you want replies to your comments sent to you, consider logging in or creating an account.

If you are having a problem with accounts or comment posting, please yell for help.