Slash Boxes

SoylentNews is people

posted by martyb on Wednesday August 15 2018, @01:02PM   Printer-friendly
from the won't-you-be-my-neighbor? dept.

The nearest neighbor problem asks where a new point fits in to an existing data set. A few researchers set out to prove that there was no universal way to solve it. Instead, they found such a way.

If you were opening a coffee shop, there's a question you'd want answered: Where's the next closest cafe? This information would help you understand your competition.

This scenario is an example of a type of problem widely studied in computer science called "nearest neighbor" search. It asks, given a data set and a new data point, which point in your existing data is closest to your new point? It's a question that comes up in many everyday situations in areas such as genomics research, image searches and Spotify recommendations.

And unlike the coffee shop example, nearest neighbor questions are often very hard to answer. Over the past few decades, top minds in computer science have applied themselves to finding a better way to solve the problem. In particular, they've tried to address complications that arise because different data sets can use very different definitions of what it means for two points to be "close" to one another.

Now, a team of computer scientists has come up with a radically new way of solving nearest neighbor problems. In a pair of papers, five computer scientists have elaborated the first general-purpose method of solving nearest neighbor questions for complex data.

Original Submission

This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 4, Funny) by shrewdsheep on Wednesday August 15 2018, @03:35PM (1 child)

    by shrewdsheep (5215) on Wednesday August 15 2018, @03:35PM (#721821)

    I suggest you pipe to /dev/random next time. For starters, you safe the world from global warming by providing free random numbers (they are not sorted, you said) to others. If they data is from HR or marketing, they can even be used for cryptographic purposes (undistinguishable from pure white noise). Finally, your boss will promote you for having gotten rid of his incriminating emails while simultaneously having created marketable property.

    Starting Score:    1  point
    Moderation   +3  
       Funny=3, Total=3
    Extra 'Funny' Modifier   0  

    Total Score:   4  
  • (Score: 0) by Anonymous Coward on Wednesday August 15 2018, @05:36PM

    by Anonymous Coward on Wednesday August 15 2018, @05:36PM (#721858)

    Shouldn't you wipe incriminating emails with a cloth instead?