Intel Announces 9th Gen Core CPUs: Core i9-9900K (8-Core), i7-9700K, & i5-9600K
Among many of Intel's announcements today, a key one for a lot of users will be the launch of Intel's 9th Generation Core desktop processors, offering up to 8-cores on Intel's mainstream consumer platform. These processors are drop-in compatible with current Coffee Lake and Z370 platforms, but are accompanied by a new Z390 chipset and associated motherboards as well. The highlights from this launch is the 8-core Core i9 parts, which include a 5.0 GHz turbo Core i9-9900K, rated at a 95W TDP.
[...] Leading from the top of the stack is the Core i9-9900K, Intel's new flagship mainstream processor. This part is eight full cores with hyperthreading, with a base frequency of 3.6 GHz at 95W TDP, and a turbo up to 5.0 GHz on two cores. Memory support is up to dual channel DDR4-2666. The Core i9-9900K builds upon the Core i7-8086K from the 8th Generation product line by adding two more cores, and increasing that 5.0 GHz turbo from one core to two cores. The all-core turbo is 4.7 GHz, so it will be interesting to see what the power consumption is when the processor is fully loaded. The Core i9 family will have the full 2MB of L3 cache per core.
[...] Also featuring 8-cores is the Core i7-9700K, but without the hyperthreading. This part will have a base frequency of 3.6 GHz as well for a given 95W TDP, but can turbo up to 4.9 GHz only on a single core. The i7-9700K is meant to be the direct upgrade over the Core i7-8700K, and although both chips have the same underlying Coffee Lake microarchitecture, the 9700K has two more cores and slightly better turbo performance, but less L3 cache per core at only 1.5MB per.
Intel also announced refreshed 8 to 18 core high-end desktop CPUs, and a new 28-core Xeon aimed at extreme workstation users.
Related:
Intel Teases 28 Core Chip, AMD Announces Threadripper 2 With Up to 32 Cores
AMD Threadripper 2 Available Starting on August 13
(Score: 2) by RamiK on Wednesday October 10 2018, @07:01AM
Designing a chip without speculative execution that performs even half as good for general purpose loads is a hundred billion dollars problem that baffled Intel and HP with the Itanium and remains unsolved. Disabling hyperthreading in favor of more cores only address a very specific speculative execution vulnerability and only to some extent. The other fixes require recompilation and have a significant performance hit.
Staying OoO, Intel/AMD/ARM are more likely to redesign their microarchitectures following SafeSpec [arxiv.org]. But it's still needs researching and is years away.
Regardless, right now, they really don't have a solution that doesn't hit you with huge performance overheads.
compiling...