Hackers can trick a Tesla into accelerating by 50 miles per hour:
This demonstration from the cybersecurity firm McAfee is the latest indication that adversarial machine learning can potentially wreck autonomous driving systems, presenting a security challenge to those hoping to commercialize the technology.
Mobileye EyeQ3 camera systems read speed limit signs and feed that information into autonomous driving features like Tesla's automatic cruise control, said Steve Povolny and Shivangee Trivedi from McAfee's Advanced Threat Research team.
The researchers stuck a tiny and nearly imperceptible sticker on a speed limit sign. The camera read the sign as 85 instead of 35, and in testing, both the 2016 Tesla Model X and that year's Model S sped up 50 miles per hour.
This is the latest in an increasing mountain of research showing how machine-learning systems can be attacked and fooled in life-threatening situations.
[...] Tesla has since moved to proprietary cameras on newer models, and Mobileye EyeQ3 has released several new versions of its cameras that in preliminary testing were not susceptible to this exact attack.
There are still a sizable number of Tesla cars operating with the vulnerable hardware, Povolny said. He pointed out that Teslas with the first version of hardware cannot be upgraded to newer hardware.
"What we're trying to do is we're really trying to raise awareness for both consumers and vendors of the types of flaws that are possible," Povolny said "We are not trying to spread fear and say that if you drive this car, it will accelerate into through a barrier, or to sensationalize it."
So, it seems this is not so much that a particular adversarial attack was successful (and fixed), but that it was but one instance of a potentially huge set. Obligatory xkcd.
Previously:
Protecting Smart Machines From Smart Attacks
A New Clothing Line Confuses Automated License Plate Readers
A Simple Sticker Tricked Neural Networks Into Classifying Anything as a Toaster
3D Printed Turtles Fool Google Image Classification Algorithm
Slight Street Sign Modifications Can Completely Fool Machine Learning Algorithms
(Score: 0) by Anonymous Coward on Friday February 21 2020, @12:33AM
And once we move to all autonomous cars, governments will simply have to publish maps in a standard format so the car can look up the correct limits without having to try to parse some marks painted on a piece of metal. Then the car will have access to better information than the human. The virtue of human intuition in knowing not to drive fast in a residential zone only arises from the fact that we are in a transition period where the information is mainly being made for human consumption.