Stories
Slash Boxes
Comments

SoylentNews is people

posted by martyb on Tuesday April 14 2020, @09:38PM   Printer-friendly
from the how-many-digits-in-a-real-number? dept.

In a number system where the real numbers could not have an infinite number of digits, how would our physics models change?

Does Time Really Flow? New Clues Come From a Century-Old Approach to Math.:

Strangely, although we feel as if we sweep through time on the knife-edge between the fixed past and the open future, that edge — the present — appears nowhere in the existing laws of physics.

In Albert Einstein's theory of relativity, for example, time is woven together with the three dimensions of space, forming a bendy, four-dimensional space-time continuum — a "block universe" encompassing the entire past, present and future. Einstein's equations portray everything in the block universe as decided from the beginning; the initial conditions of the cosmos determine what comes later, and surprises do not occur — they only seem to. "For us believing physicists," Einstein wrote in 1955, weeks before his death, "the distinction between past, present and future is only a stubbornly persistent illusion."

The timeless, pre-determined view of reality held by Einstein remains popular today. "The majority of physicists believe in the block-universe view, because it is predicted by general relativity," said Marina Cortês, a cosmologist at the University of Lisbon.

However, she said, "if somebody is called on to reflect a bit more deeply about what the block universe means, they start to question and waver on the implications."

Physicists who think carefully about time point to troubles posed by quantum mechanics, the laws describing the probabilistic behavior of particles. At the quantum scale, irreversible changes occur that distinguish the past from the future: A particle maintains simultaneous quantum states until you measure it, at which point the particle adopts one of the states. Mysteriously, individual measurement outcomes are random and unpredictable, even as particle behavior collectively follows statistical patterns. This apparent inconsistency between the nature of time in quantum mechanics and the way it functions in relativity has created uncertainty and confusion.

Over the past year, the Swiss physicist Nicolas Gisin has published four papers that attempt to dispel the fog surrounding time in physics. As Gisin sees it, the problem all along has been mathematical. Gisin argues that time in general and the time we call the present are easily expressed in a century-old mathematical language called intuitionist mathematics, which rejects the existence of numbers with infinitely many digits. When intuitionist math is used to describe the evolution of physical systems, it makes clear, according to Gisin, that "time really passes and new information is created." Moreover, with this formalism, the strict determinism implied by Einstein's equations gives way to a quantum-like unpredictability. If numbers are finite and limited in their precision, then nature itself is inherently imprecise, and thus unpredictable.

Physicists are still digesting Gisin's work — it's not often that someone tries to reformulate the laws of physics in a new mathematical language — but many of those who have engaged with his arguments think they could potentially bridge the conceptual divide between the determinism of general relativity and the inherent randomness at the quantum scale.

[...] The modern acceptance that there exists a continuum of real numbers, most with infinitely many digits after the decimal point, carries little trace of the vitriolic debate over the question in the first decades of the 20th century. David Hilbert, the great German mathematician, espoused the now-standard view that real numbers exist and can be manipulated as completed entities. Opposed to this notion were mathematical "intuitionists" led by the acclaimed Dutch topologist L.E.J. Brouwer, who saw mathematics as a construct. Brouwer insisted that numbers must be constructible, their digits calculated or chosen or randomly determined one at a time. Numbers are finite, said Brouwer, and they're also processes: They can become ever more exact as more digits reveal themselves in what he called a choice sequence, a function for producing values with greater and greater precision.

By grounding mathematics in what can be constructed, intuitionism has far-reaching consequences for the practice of math, and for determining which statements can be deemed true. The most radical departure from standard math is that the law of excluded middle, a vaunted principle since the time of Aristotle, doesn't hold. The law of excluded middle says that either a proposition is true, or its negation is true — a clear set of alternatives that offers a powerful mode of inference. But in Brouwer's framework, statements about numbers might be neither true nor false at a given time, since the number's exact value hasn't yet revealed itself.

In work published last December in Physical Review A, Gisin and his collaborator Flavio Del Santo used intuitionist math to formulate an alternative version of classical mechanics, one that makes the same predictions as the standard equations but casts events as indeterministic — creating a picture of a universe where the unexpected happens and time unfolds.


Original Submission

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 4, Insightful) by Immerman on Tuesday April 14 2020, @11:28PM (2 children)

    by Immerman (3985) on Tuesday April 14 2020, @11:28PM (#982823)

    Yes, pi ids defined as the ratio of circumference to diameter - but try to compute the exact value of it, through any of a multitude of techniques, and you'll find that you'd need infinitely many digits to represent it.

    And, while it seems at first glance that the existence or non-existence of infinitely precise numbers would be irrelevant to computing formulas - that overlooks the fact that those formulas are themselves constructed based on a multitude of mathematical laws that themselves assume that infinitely precise numbers exist. The Law of the Excluded Middle which they mention for example, is a very common, and occasionally essential, tool in proving the validity of other laws. If the Law of the Excluded Middle is false, then so is every mathematical law which relies on it as an essential element of the proof. Which means you can no longer use those laws (or any laws that rely on them) when manipulating formulas. Whole families of algebraic manipulations that were believed to be possible without changing the truth of a statement, actually couldn't be, as the manipulated statement would implicitly incorporate the falsehood of the Law of the Excluded Middle.

    Basically, if infinitely precise numbers can't, in theory, exist, then you've fundamentally altered vast swaths of the underlying structure of mathematics. Eliminating vast swaths of algebraic manipulations that were falsely believed to preserve the truthhood of a statement, while introducing vast swaths of undiscovered new manipulations that we would currently dismiss as trivially false.

    You could still plug numbers into the old formula - but the formula would no longer be accepted as accurately representing the underlying theory.

    Starting Score:    1  point
    Moderation   +2  
       Insightful=2, Total=2
    Extra 'Insightful' Modifier   0  
    Karma-Bonus Modifier   +1  

    Total Score:   4  
  • (Score: 2) by c0lo on Wednesday April 15 2020, @01:38AM (1 child)

    by c0lo (156) on Wednesday April 15 2020, @01:38AM (#982880) Journal

    And, while it seems at first glance that the existence or non-existence of infinitely precise numbers would be irrelevant to computing formulas - that overlooks the fact that those formulas are themselves constructed based on a multitude of mathematical laws that themselves assume that infinitely precise numbers exist.

    The author of TFA doesn't have a problem with maths, it has a problem with applying maths to a chaotic universe in which we can't measure things with absolute precision.

    He seems to imply that's a big deal, but me thinks is a non-problem, at least not in physics (philosophers may philosophate, the Universe doesn't care)

    --
    https://www.youtube.com/watch?v=aoFiw2jMy-0
    • (Score: 2) by MostCynical on Wednesday April 15 2020, @02:46AM

      by MostCynical (2589) on Wednesday April 15 2020, @02:46AM (#982893) Journal

      number of possible 'next states' is either infinite or finite.

      If infinite, author of TFA thinks he has free will

      if finite, author of TFA thinks he can't have free will

      if finite, but so uncountably large, that the heat death of the universe will occur before you count them, is that close enough to infinite not to matter to humans? Author of TFA thinks the distinction matters. Anyone not trying to justify having free will or a soul or whatever doesn't care.

      "huge" is close enough to "infinite" for most people. Drawing any circle is possible, so then announcing that it is a unit size of whatever units equal one diameter of that circle proves a unit circle can be drawn.

      Author needs to let go of his hang ups.
      Here, have some soul [youtube.com]

      --
      "I guess once you start doubting, there's no end to it." -Batou, Ghost in the Shell: Stand Alone Complex