10 years of Raspberry Pi: The $25 computer has come a long way:
This little device has revolutionized computing since it came on the scene. We take a look back at its journey.
The UK in the 1980s was ground zero for the microcomputer revolution. Cheap computers based on 8-bit processors flooded the market, teaching a generation to program using built-in BASIC interpreters. Homes had devices like Sinclair's ZX81 and Spectrum, while schools used Acorn's BBC Micro.
These weren't like today's PCs. They were designed and built to be accessible, with IO ports that could be accessed directly from the built-in programming environments. Turn one on, and you were ready to start programming.
But then things changed: 16-bit machines were more expensive, and technical and marketing failures started to remove pioneers from the market. The final nail in the coffin was the IBM PC and its myriad clones, focused on the business market and designed to run, not build, applications.
It became harder to learn computing skills, with home computers slowly replaced by gaming consoles, smartphones and tablets. How could an inquisitive child learn to code or build their own hardware?
The answer first came from the Arduino, a small ARM-based developer board that served as a target for easy-to-learn programming languages. But it wasn't a computer; you couldn't hook it up to a keyboard and screen and use it.
Eben Upton, an engineer at microcontroller chip manufacturer Broadcom, was frustrated with the status quo. Looking at the current generation of ARM-based microcontrollers he realized it was possible to use a low-cost (and relatively low power) chip to build a single-board computer. Using a system-on-a-chip architecture, you could bundle CPU and GPU and memory on a single chip. Using the SOC's general purpose IO ports, you could build it into a device that was easily expandable, booting from a simple SD storage card.
Work on what was to become the Raspberry Pi began in 2006, with a team of volunteers working with simple ARM SOC.
Can anyone remember the first program that they actually wrote (rather than copied from a magazine or downloaded from a friend's cassette tape)? Mine simply moved an asterisk around the screen 'bouncing' off the edges, and was written in Z80 assembly language. That is all I had on my Nascom 1.
(Score: 2) by looorg on Tuesday March 15 2022, @01:22AM
That was not the issue really. The issue is/was that if you fill a program with GOTO functions, because you run out of line numbers or something similar, it doesn't really become very readable or good code as you keep jumping back and forth. It has nothing to do with Djikstra or academic coding practices. I wasn't old enough for that or to even know who Djikstra was at the time. My conclusion was solely based on that all these GOTO lines and jumping back and forth wasn't really doing wonders for the code and readability. It didn't exactly do wonders for the performance either.