Arthur T Knackerbracket has processed the following story:
A new study shows that nickel oxide superconductors, which conduct electricity with no loss at higher temperatures than conventional superconductors do, contain a type of quantum matter called charge density waves, or CDWs, that can accompany superconductivity.
The presence of CDWs shows that these recently discovered materials, also known as nickelates, are capable of forming correlated states -- "electron soups" that can host a variety of quantum phases, including superconductivity, researchers from the Department of Energy's SLAC National Accelerator Laboratory and Stanford University reported in Nature Physics today.
"Unlike in any other superconductor we know about, CDWs appear even before we dope the material by replacing some atoms with others to change the number of electrons that are free to move around," said Wei-Sheng Lee, a SLAC lead scientist and investigator with the Stanford Institute for Materials and Energy Science (SIMES) who led the study.
"This makes the nickelates a very interesting new system -- a new playground for studying unconventional superconductors."
[...] CDWs are just one of the weird states of matter that jostle for prominence in superconducting materials. You can think of them as a pattern of frozen electron ripples superimposed on the material's atomic structure, with a higher density of electrons in the peaks of the ripples and a lower density of electrons in the troughs.
As researchers adjust the material's temperature and level of doping, various states emerge and fade away. When conditions are just right, the material's electrons lose their individual identities and form an electron soup, and quantum states such as superconductivity and CDWs can emerge.
[...] "This makes nickelates a very interesting new system for studying how these quantum phases compete or intertwine with each other," he said. "And it means a lot of tools that are used to study other unconventional superconductors may be relevant to this one, too."
Journal Reference:
Rossi, M., Osada, M., Choi, J. et al. A broken translational symmetry state in an infinite-layer nickelate. Nat. Phys. (2022). DOI: 10.1038/s41567-022-01660-6
(Score: -1, Troll) by GreenSilver on Friday July 29 2022, @08:48AM
Help! I'm being repressed!