SoylentNews
SoylentNews is people
https://soylentnews.org/

Title    Atomically Thin Semiconductors for Nanophotonics
Date    Monday June 20 2022, @07:13AM
Author    janrinok
Topic   
from the it's-only-wafer-thin dept.
https://soylentnews.org/article.pl?sid=22/06/19/1440252

upstart writes:

Atomically thin semiconductors for nanophotonics:

Atomically thin semiconductors such as molybdenum disulfide and tungsten disulfide are promising materials for nanoscale photonic devices. These approximately 2D semiconductors support so-called excitons, which are bound electron-hole pairs, that can align vertically along the thin plane of the materials.

Excitons are bound electron-hole pairs that can interact with electrical charges, spins, and phonons. This range of interactions indicates that excitons could herald a new wave of devices based on nanoscale photonics and optoelectronics.

For his Ph.D. thesis, Rasmus Godiksen investigated the exciton behavior in atomically thin semiconductors, focusing on emitted light, by exploring the potential of excitons in ultra-thin semiconductors such as molybdenum disulfide (MoS2) and tungsten disulfide (WS2). The semiconductors are so thin that can be approximated as 2D materials. So, in effect, Godiksen studied excitons in 2D materials.

First, Godiksen and his collaborators showed that the 2D excitons are very sensitive to their nanoscopic environment. Using photoluminescence (PL) imaging techniques, they measured fluorescence fluctuations due to charge transfer to the semiconductor. Such fluctuations are spatially correlated over tens of micrometers in WS2 monolayers on metal films.

Due to charge fluctuations from trap states (which are states that trap excited carriers such as electrons, holes, and excitons), they follow power-law statistics with simultaneous changes in emission intensity, lifetime, and exciton-trion ratios. Power-law statistics is an indicator of trapping and de-trapping of excitons, so this provides evidence of trapped states.

Excitons in WS2 also have a degree of freedom with regard to valleys, which couples spin polarization to momentum direction. Valleys in the band structure can be explored using circularly polarized light. Exciting or detecting an exciton in one valley can be used in information technologies, for example.

[...] Single-photon sources are interesting for quantum computing, molecular sensors could increase sensitivity down to the single molecule level, and valleytronic devices could pave the way for a new generation of electronic devices based on valley polarization.

Reference:
Godiksen, R. H. (2022). Atomically Thin Semiconductors For Nanophotonics. Ph.D. Thesis. Eindhoven University of Technology.


Original Submission

Links

  1. "upstart" - https://soylentnews.org/~upstart/
  2. "Atomically thin semiconductors for nanophotonics" - https://phys.org/news/2022-06-atomically-thin-semiconductors-nanophotonics.html
  3. "Original Submission" - https://soylentnews.org/submit.pl?op=viewsub&subid=55613

© Copyright 2024 - SoylentNews, All Rights Reserved

printed from SoylentNews, Atomically Thin Semiconductors for Nanophotonics on 2024-03-29 05:25:01