SoylentNews
SoylentNews is people
https://soylentnews.org/

Title    ‘Quantum Memory’ Proves Exponentially Powerful
Date    Friday October 25, @06:45AM
Author    hubie
Topic   
from the Schrödinger's-RAM dept.
https://soylentnews.org/article.pl?sid=24/10/24/0210242

Arthur T Knackerbracket has processed the following story:

It’s not easy to study quantum systems — collections of particles that follow the counterintuitive rules of quantum mechanics. Heisenberg’s uncertainty principle, a cornerstone of quantum theory, says it’s impossible to simultaneously measure a particle’s exact position and its speed — pretty important information for understanding what’s going on.

In order to study, say, a particular collection of electrons, researchers have to be clever about it. They might take a box of electrons, poke at it in various ways, then take a snapshot of what it looks like at the end. In doing so, they hope to reconstruct the internal quantum dynamics at work.

But there’s a catch: They can’t measure all the system’s properties at the same time. So they iterate. They’ll start with their system, poke, then measure. Then they’ll do it again. Every iteration, they’ll measure some new set of properties. Build together enough snapshots, and machine learning algorithms can help reconstruct the full properties of the original system — or at least get really close.

This is a tedious process. But in theory, quantum computers could help. These machines, which work according to quantum rules, have the potential to be much better than ordinary computers at modeling the workings of quantum systems. They can also store information not in classic binary memory, but in a more complex form called quantum memory. This allows for far richer and more accurate descriptions of particles. It also means that the computer could keep multiple copies of a quantum state in its working memory.

[...] Now, two independent teams have come up with ways of getting by with far less quantum memory. In the first paper, Sitan Chen, a computer scientist at Harvard University, and his co-authors showed that just two copies of the quantum state could exponentially reduce the number of times you need to take a snapshot of your quantum system. Quantum memory, in other words, is almost always worth the investment.

“These two- or three-copy measurements, they’re more powerful than one might think,” said Richard Kueng, a computer scientist at Johannes Kepler University Linz in Austria.

[...] The combined results also speak to a more fundamental goal. For decades, the quantum computing community has been trying to establish quantum advantage — a task that quantum computers can do that a classical one would struggle with. Usually, researchers understand quantum advantage to mean that a quantum computer can do the task in far fewer steps.

The new papers show that quantum memory lets a quantum computer perform a task not necessarily with fewer steps, but with less data. As a result, researchers believe this in itself could be a way to prove quantum advantage. “It allows us to, in the more near term, already achieve that kind of quantum advantage,” said Hsin-Yuan Huang, a physicist at Google Quantum AI.

But researchers are excited about the practical benefits too, as the new results make it easier for researchers to understand complex quantum systems.

“We’re edging closer to things people would really want to measure in these physical systems,” said Jarrod McClean, a computer scientist at Google Quantum AI.


Original Submission

Links

  1. "following story" - https://www.quantamagazine.org/quantum-memory-proves-exponentially-powerful-20241016/
  2. "Heisenberg’s uncertainty principle" - https://www.quantamagazine.org/new-experiments-to-pit-quantum-mechanics-against-general-relativity-20131031/
  3. "machine learning" - https://www.quantamagazine.org/machine-learning-aids-classical-modeling-of-quantum-systems-20230914/
  4. "quantum computers" - https://www.quantamagazine.org/tag/quantum-computing/
  5. "paper" - https://arxiv.org/abs/2404.19105
  6. "Sitan Chen" - https://sitanchen.com/
  7. "Richard Kueng" - https://iic.jku.at/team/kueng/
  8. "quantum advantage" - https://www.quantamagazine.org/physicists-finally-find-a-problem-only-quantum-computers-can-do-20240312/
  9. "Hsin-Yuan Huang" - https://hsinyuan-huang.github.io/
  10. "Jarrod McClean" - https://jarrodmcclean.com/
  11. "Original Submission" - https://soylentnews.org/submit.pl?op=viewsub&subid=64099

© Copyright 2024 - SoylentNews, All Rights Reserved

printed from SoylentNews, ‘Quantum Memory’ Proves Exponentially Powerful on 2024-12-07 05:50:14