A Government Accountability Office report [gao.gov] has found that the U.S. is unlikely to produce enough Plutonium-238 [wikipedia.org] for NASA missions about a decade from now [spaceflightinsider.com]. The isotope has been used in radioisotope thermoelectric generators (RTGs) on missions such as Voyager, Cassini, and the Mars Science Laboratory:
Another GAO report [gao.gov] notes: "[...], DOE currently maintains about 35 kilograms (kg) [77 pounds] of Pu-238 isotope designated for NASA missions, about half of which meets power specifications for spaceflight. However, given NASA's current plans for solar system exploration, this supply could be exhausted within the next decade."
[...] To address the plutonium problem, in 2011 NASA provided funding to the Department of Energy (DOE) to restart domestic production of the substance. The program is called the Pu-238 Supply Project. So far, the Project has produced ∼3.5 ounces (100 grams) of Pu-238. DOE identified an interim goal of producing 10 to 17.5 ounces (300 to 500 grams) of new Pu-238 per year by 2019. The goal is to produce 1.5 kilograms of new Pu-238 per year—considered full production—by 2023, at the earliest.
GAO is questioning the Supply Project's ability to meet its goal of producing 1.5 kilograms of new Pu-238 per year by 2026. For one thing, the oversight agency's interviews with DOE officials revealed that the agency hasn't perfected the chemical processing required to extract new Pu-238 from irradiated targets to meet production goals.
Only one DOE reactor is currently qualified to make Pu-238:
NASA's plutonium will be produced at two of these reactors, but only one of them is currently qualified to make Pu-238. GAO reported that initial samples of the new Pu-238 did not meet spaceflight specifications because of impurities. However, according to DOE, the samples can be blended and used with existing Pu-238.