Stories
Slash Boxes
Comments

SoylentNews is people

SoylentNews is powered by your submissions, so send in your scoop. Only 14 submissions in the queue.

Submission Preview

The Most Important Scientist You’ve Never Heard Of

Rejected submission by upstart at 2019-10-04 00:01:36
/dev/random

████ This is just here to be deleted. ████

Submitted via IRC for Runaway1956

The Most Important Scientist You’ve Never Heard Of [mentalfloss.com]

In the summer of 1964, a helicopter dumped Patterson off at the U.S. Arctic Research Center at Camp Century, Greenland. The camp looked sleepy from the air. A blanket of snow littered with oil drums and caterpillar tractors. But about 20 feet below the ice sheet, hundreds of soldiers buzzed in a labyrinth of tunnels that included, along with a theater, library, and post office, several secret annexes. The military called the camp a “polar research station,” but it was also ground zero for Project Iceworm, a secret (and failed) 2500-mile network of tunnels intended to store, and launch, nuclear missiles.

Patterson was through with bombs. He came to dig for giant ice cubes.

In the arctic, snow acts like sediment. Old snow rests deep under your feet while younger snow settles on top of it. Anyone who digs deep enough can effectively dig back in time. Patterson wanted to compare the lead in ancient ice to new ice and needed to excavate about 100 gallons of it.

Each night, as the soldiers slept, Patterson’s team descended into a sloping ice tunnel a few hundred feet below the surface. At this depth, the snow was 300 years old. The crew wore suits and gloves cleaned in acid. Using acid-washed saws, they slowly cut 2-foot cubes of ice, placed them in giant acid-washed plastic containers, and lugged them out of the tunnel to a plastic-lined trailer at the surface. The ice was melted, placed on military cargo planes, and flown to a lab in California.

While the base was excellent for dredging up ancient ice—they collected samples as old as 2800 years—the surface was too polluted. So, to find pristine new deposits of ice, Patterson and a group of soldiers crammed into three snow tractors and plowed through a storm. Cascades of snow gobbled the sun, and Patterson, who fruitlessly attempted to navigate with a sun compass, had to mark their tracks by stopping and planting a flag every couple feet. After reaching a desolate snowy plain, they dug a trench 50 feet deep and 300 feet long.

A year later, Patterson relived the episode in Antarctica. With summer temperatures dipping to 10 degrees below zero, his team, shrouded in clear plastic suits, revved electric chain saws and dug tunnels into the snow, 300 feet long and 140 feet deep. They gathered samples from 10 distinct eras. As one member later recalled in Toxic Truth, "It drove Pat nuts that everybody's nose dripped, as it does in the cold. The worry was an unnoticed drip would fall on a block. If your nose did drip, we would take tools and chip a few inches around the spot where it fell."

To harvest younger snow, the team steered a Sno-Cat tractor to an untouched patch of ice 130 miles upwind of their base. “We were forced to knuckle down to the pick, the shovel, and the man-haul, and dig an inclined shaft 100 feet long to provide access to the snow layers that were to be sampled,” Patterson wrote. “One member of the party, in bitter contemplation, calculated that we hoisted nearly 1000 banana boat loads of ice up and out of that slanting hell-hole.”

Back in California, Patterson developed stringent protocols to avoid contamination. It could take days to analyze just one sample. He made researchers wrap their bodies in acid-washed polyethylene bags. Each new sample was handled with a new pair of acid-cleaned gloves. (Years later, when Patterson analyzed more ice cores from Antarctica, he pointed to a spot on an ice sample and told his assistant, Russ Flegal, it was older than Jesus. In the retrospective book Clean Hands [worldcat.org], Flegal recalls, “He then told me that if I dropped the core it would be sacrilegious, and that I would be banished from his laboratory for life.”)

The numbers out of Greenland stupefied. The samples showed a “200- or 300-fold increase” in lead from the 1700s to present day. But the most startling jump had occurred in the last three decades.

Talk about smoking guns: Lead contamination had rocketed as car ownership—and gasoline consumption—boomed in North America. By more than 300 percent.

Patterson received a bigger surprise, however, when he surveyed the oldest ice samples. The ice from the 1750s wasn’t pure either. Neither was ice from the year 100 BCE.

Lead pollution was as old as civilization itself.

The Copper Age. The Bronze Age. The Iron Age. The great periods of early human progress, stretching from Neolithic times to the advent of writing, are named for metals, the ores that ancient people used to make tools, weapons, pottery, and currency—the glinting sparks of civilization. It’s odd, however, that lead hasn’t forged its name in the history books. Humans have relied on it for millennia.

About 6000 years ago, humans discovered they could extract silver by smelting lead from sulfide ores. Ancient Mesopotamians and Egyptians, and, later, the Chinese used lead to toughen glass. From the Babylonians onward, people glazed pottery with lead. With its low melting point, the soft and malleable metal was a metallurgy miracle.

The concept of money—silver coinage in particular—would pump the first substantial loads of lead into Earth’s atmosphere. Lead was a 300-to-1 byproduct of silver during the heydays of Grecian mining. In a study published in Science [jstor.org], Patterson argued that lead and silver mining stimulated “the development of Greek civilization."

But it also polluted the atmosphere. And nobody noticed. After Rome took over Greece’s mines, the only pollution the Greek historian Strabo could see was an infestation of “greedy Italians.”

Rome mined lead wherever the Empire could stretch its tentacles—Macedonia, North Africa, Spain, Great Britain—and used the metal for cosmetics, medicines, cisterns, coffins, containers, coins, medals, sling bullets, ornaments. They even used lead acetate, or “sugar of lead,” to sweeten wine.

Between 700 BCE and the height of Roman power, around year 0, humans produced 80,000 tons of lead a year. Patterson wrote that “This occurrence marks the oldest large-scale hemispheric pollution ever reported, long before the onset of the Industrial Revolution."

Ancient people quickly learned that lead was a menace to health. In the first century, Pliny the Elder complained that quaffing lead-sweetened wine caused “paralytic hands.” The Greek medic Dioscorides agreed, describing leaded spirits as “most hurtful to the nerves.”

Unfortunately, few Roman citizens fully grasped the perils of lead poisoning because most people sweating in lead mines were slaves. Working 12-hour days, Roman slave miners dug pits up to 650 feet deep [jstor.org] and extracted the metal by setting seams of rock ablaze. Pliny suspected the smoke ravaged their lungs: “While it is being melted, the breathing passages should be protected,” he warned, “otherwise the noxious and deadly vapor of the lead furnace is inhaled; it is hurtful to dogs with special rapidity.” Miners shielded themselves from lead vapors by covering their mouths with the bladders of animals.

Rome’s lust for lead grew with time. In fact, the Eternal City became so swamped in the metal that it forbade the use of lead as currency. Instead, lead was set aside for admission tickets to the circus and theater—and, of course, the city’s hydro-engineering projects.

Lead pipes connected Roman homes, baths, and towns with a glorious network of water. According to Lloyd B. Tepper, writing in the Journal of the Society for Industrial Archeology, [jstor.org] the Romans mined 18 million tons of lead between 200 BCE and 500 CE, much of it for pipes. All this time, they were aware of lead’s dangers. The Roman architect Vitruvius begged officials to use terracotta instead. "Water," he plead, should “on no account be conducted in leaden pipes if we are desirous that it should be wholesome.”

Rome did not listen. And then it collapsed. “The uses of lead were so extensive that lead poisoning, plumbism, has sometimes been given as one of the causes of the degeneracy of Roman citizens,” writes Jean David C. Boulakia in the American Journal of Archaeology [PDF [jstor.org]]. “Perhaps, after contributing to the rise of the Empire, lead helped to precipitate its fall.”

Ancient ice tells us that, after Rome fell, lead pollution dipped and flatlined until the late 10th century, when silver mines opened near modern Germany, Austria, and the Czech Republic. Lead levels sank again in the 1300s as the Black Death killed 30 percent of Europe’s population but resurged as western society recovered.

In 1498, the Pope banned the practice of adulterating wine with lead. The decree was largely symbolic. At that point, lead was pervasive. It was even in cosmetics. Vannoccio Biringuccio, an Italian metallurgist, observed in his 1540 De La Pirotechnia [google.com] that “Women in particular are greatly indebted [to white lead], for, with art, it disposes a certain whiteness, which, giving them a mask, covers all their obvious and natural darkness, and in this way deceives the simple sight of men by making dark women white and hideous ones, if not beautiful, at least less ugly.” (Some charmer.)

Intellectuals continued ringing alarms, but nobody took heed. Instead, entire buildings were constructed devoted to the production of lead. European skylines were punctuated by shot towers, where molten lead slithered down ramps to form bullets. Louis Tanquerel des Planches, a French physician, remarked [google.com] that shotmakers suffered from “lead colic.”

In colonial America, Benjamin Franklin noticed that printers—who depended on lead as a type metal—suffered from the same “paralytic hands” Pliny the Elder observed centuries earlier. Franklin also mentioned that [google.com], in 1786, North Carolinians complained that lead-distilled rum from New England caused “dry belly-ache with a loss of the use of their limbs.”

Like Rome, British and early American cities opted to flush their municipal water through lead pipes. In lead-loving New England, infant mortality and stillbirths were 50 percent more common than locales that used another metal. People knew lead was responsible. In England, a pathologist named Arthur Hall recommended that any woman who needed an abortion should just drink the tap water. On the black market, lead was the main ingredient in abortion pills.

In the 20th century, lead paint was marketed as a replacement for wallpaper. The Dutch Boy Paint Company, the dominant lead paint manufacturer, targeted children by selling paint [huntington.org]coloring [pinterest.com]books [youtube.com] with jingles: “This famous Dutch Boy Lead of mine can make this playroom fairly shine!” In one book, the Dutch Boy Lead Party [oclc.org], a boy—a member of the “Lead family"—carries a paint bucket and frolics with a pair of anthropomorphic shoes who sing [livejournal.com],

You know when we were moulded
the man who made us said.
We’re strong and tough and lively
because in us there’s lead.

In 1923, the National Lead Company bought ads in National Geographic exclaiming “Lead helps to guard your health!” That same year, Thomas Midgley Jr. and Charles Kettering added lead to gasoline.

Men died. Hospitals filled. And people still vouched for the metal's safety. In the 1930s, a lead advocacy group proudly claimed [latimes.com], “In many cities, we have successfully opposed ordinance or regulation revisions which would have reduced or eliminated the use of lead.”

Between 1940 and 1960, as public health experts David Rosner and Gerald Markowitz write in Lead Wars [amazon.com], the amount of lead produced for American gas tanks increased eightfold.

By 1963, nearly 83 million Americans owned a car.


Original Submission