████ # This file was generated bot-o-matically! Edit at your own risk. ████
Scientists Have Discovered a Genuine Room-Temperature Superconductor - ExtremeTech [extremetech.com]:
The search for a truly room-temperature superconducting material has been one of the great Holy Grails in engineering and physics. The ability to move electricity from Point A to B with zero resistance and hence no losses would be a game-changer for human civilization. Unfortunately, until today, every known superconductor still required very cold temperatures. Today, scientists announced they’ve achieved superconducting at 59 degrees Fahrenheit/15 Celsius. While this is still a bit chilly, you can hit 59F in a well air-conditioned building. This is a genuine breakthrough, but it doesn’t immediately clear the path towards easy deployment of the technology.
At extremely low temperatures, the behavior of electrons through a material changes. At temperatures approaching absolute zero, electrons passing through a material form what are known as Cooper pairs. Normally, single electrons essentially ping-pong through the ionic lattice of the material they are passing through. Each time an electron collides with an ion in the lattice, it loses a tiny amount of energy. This loss is what we call resistance. When cooled to a low enough temperature, electrons behave dramatically differently. Cooper pairs behave like a superfluid, meaning they can flow through material without any underlying energy loss. Tests have demonstrated that current stored inside a superconductor will remain there for as long as the material remains in a superconductive state with zero loss of energy.
There are two problems yet standing between us and a more effective exploitation of this discovery. First, we aren’t sure exactly why this combination of elements works in the first place. The research team [nature.com] used sulfur and carbon, then added hydrogen, forming hydrogen sulfide(H2S) and methane (CH4). These chemicals were placed on a diamond anvil and compressed, then exposed to a green laser for several hours to break sulfur-sulfur bonds. This much is known. Unfortunately, determining the exact composition of the material has proven impossible thus far. The diamond anvil prevents the use of X-rays, and existing technologies that can work around that problem aren’t capable of locating hydrogen atoms in a lattice. The team’s efforts to characterize and understand its own discovery are still ongoing.
The researchers also have a second pressing problem: It takes about 2.5M atmospheres of pressure to create the superconducting effect. That’s roughly 75 percent of the pressure found at the Earth’s core, and it’s a bit difficult to replicate on planet Earth. If we were on Jupiter, we’d have a lot fewer problems with duplicating this kind of pressure, but that’s mostly because we’d all be dead and would have a lot fewer problems, period.
The importance of this work is that it proves room-temperature superconductors actually exist. This new material runs 50 degrees Fahrenheit warmer than any previously-known superconductor, which would make it an impressive step forward even if we were still working with sub-zero supercooled temperatures. While the amount of pressure required to reach this operating state makes practical deployment impossible, we now have one known-good method of solving this problem. Where there is one, there could be more.
This discovery doesn’t solve the problem, but it’s a fundamental and necessary part of the puzzle.
Feature image by J. Adam Fenster/University of Rochester.
Now Read:
- Twisted Graphene Exhibits Previously Theoretical Magnetic State With Great Potential [extremetech.com]
- New Hydrogen Discovery Could Make Room-Temperature Superconductors a Reality [extremetech.com]
- What are Superconductors? [extremetech.com]