Stories
Slash Boxes
Comments

SoylentNews is people

SoylentNews is powered by your submissions, so send in your scoop. Only 19 submissions in the queue.
posted by hubie on Saturday July 08 2023, @06:20AM   Printer-friendly

After Decades of Observations, Astronomers have Finally Sensed the Pervasive Background Hum of Merging Supermassive Black Holes:

We've become familiar with LIGO/VIRGO's detections of colliding black holes and neutron stars that create gravitational waves, or ripples in the fabric of space-time. However, the mergers between supermassive black holes – billions of times the mass of the Sun — generate gravitational waves too long to register with these instruments.

But now, after decades of careful observations, astronomers around the world using a different type of gravitational wave detection method have finally gathered enough data to measure what is essentially a gravitational wave background hum of the Universe, mostly from supermassive black holes spiraling toward collision.

Scientists say the newly detected gravitational waves are by far the most powerful ever measured, and they persist for years to decades. They carry roughly a million times as much energy as the one-off bursts of gravitational waves from black hole and neutron star mergers detected by LIGO and Virgo.

"It's like a choir, with all these supermassive black hole pairs chiming in at different frequencies," said scientist Chiara Mingarelli, who worked about 190 other scientists with the NANOGrav (North American Nanohertz Observatory for Gravitational Waves). "This is the first-ever evidence for the gravitational wave background. We've opened a new window of observation on the universe."

[...] For this collaboration, 25 years of observing 25 pulsars revealed the gravitational waves with wavelengths much longer than those seen by other experiments.

[...] Since they are long-lasting, the gravitational-wave signals from these gigantic binaries are expected to overlap, like voices in a crowd or instruments in an orchestra, producing an overall background hum that imprints a unique pattern in pulsar timing data.

NANOGrav's results were published in five papers in The Astrophysical Journal Letters, while papers appeared in other journals from the European, Australian, Indian and Chinese pulsar timing arrays.

The NANOGrav papers report a "strong evidence" of these long, low-frequency signals, reporting the detection at a 3.5- to 4-sigma level, which is less than the 5-sigma threshold that physicists usually want to claim a discovery. But a 4-sigma amplitude is better than the 3.5 sigma from the Cosmic Background Explorer (COBE) spacecraft on the cosmic microwave background (CMB). The scientists for NANOGrav say they have more than 99% confidence that the signal is real.

[...] Below are links to the NANOGrav papers:

Sources: NANOGrav, Simon Foundation, University of Manchester, Yale, West Virginia University


Original Submission

This discussion was created by hubie (1068) for logged-in users only, but now has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
(1)
  • (Score: 2) by DadaDoofy on Sunday July 09 2023, @09:21PM

    by DadaDoofy (23827) on Sunday July 09 2023, @09:21PM (#1315280)

    I'm reasonably certain this is the source of the sound you hear through most of Eraserhead.

(1)