Stories
Slash Boxes
Comments

SoylentNews is people

SoylentNews is powered by your submissions, so send in your scoop. Only 18 submissions in the queue.
posted by janrinok on Sunday June 01 2014, @02:59PM   Printer-friendly
from the it-keeps-getting-more-complicated dept.

Zilong Li and Cosimo Bambi with Fudan University in Shanghai have come up with a very novel idea--those black holes that are believed to exist at the center of a lot of galaxies, may instead by wormholes. They've written a paper [abstract], uploaded to the preprint server arXiv, describing their idea and how what they've imagined could be proved right (or wrong) by a new instrument soon to be added to an observatory in Chile.

From the article:

Back in 1974, space scientists discovered Sagittarius A* (SgrA*) - bright source of radio waves emanating from what appeared to be near the center of the Milky Way galaxy. Subsequent study of the object led scientists to believe that it was (and is) a black hole - the behavior of stars nearby, for example, suggested it was something massive and extremely dense.

What we're able to see when we look at SgrA* are plasma gasses near the event horizon, not the object itself as light cannot escape. That should be true for wormholes too, of course, which have also been theorized to exist by the Theory of General Relativity. Einstein even noted the possibility of their existence. Unfortunately, no one has ever come close to proving the existence of wormholes, which are believed to be channels between different parts of the universe, or even between two universes in multi-universe theories. In their paper, Li and Bambi suggest that there is compelling evidence suggesting that many of the objects we believe to be black holes at the center of galaxies, may in fact be wormholes.

Plasma gases orbiting a black hole versus a wormhole should look different to us, the pair suggest, because wormholes should be a lot smaller. Plus, the presence of wormholes would help explain how it is that even new galaxies have what are now believed to be black holes - such large black holes would presumably take a long time to become so large, so how can they exist in a new galaxy? They can't Li and Bambi conclude, instead those objects are actually wormholes, which theory suggests could spring up in an instant, and would have, following the Big Bang.

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 0) by Anonymous Coward on Monday June 02 2014, @11:58AM

    by Anonymous Coward on Monday June 02 2014, @11:58AM (#50162)

    Something else along the same lines would be to take a Schwarzschild hole, and then fire an electron into it, dead at the centre. This imaprts a charge. A *charged* spherical black hole is a Reisser-Noerdstrom hole, and internally it looks a lot like Kerr. The singularity isn't cylindrical but it also isn't inevitable. So firing that one electron into the hole has totally rearranged the hole's insides. How about firing it in off-centre? Then the hole picks up a tiny angular momentum along with its tiny charge, and becomes what is known as a Kerr-Newman -- charged and rotating. The insides are basically identical to a Kerr with unimportant differences, but again the fundamental nature of the hole has changed.

    Actually, the electron has an intrinsic angular momentum (spin!), therefore even a centrally falling electron will give the black hole an angular momentum. BTW, from a quantum mechanical point of view, you'll change it from a bosonic to a fermionic black hole (assuming those terms make actually sense for black holes).

    Another interesting fact is that the gyromagnetic ratio of a charged black hole is 2, just as for an electron (without QED corrections, but then, the black hole gyromagnetic ratio is calculated without QED corrections ass well). Now if you assume the electron were a black hole, what would be its radius? Well, it turns out the electron violates the restrictions for charged black holes; a Reisser-Noerdstrom solution for those parameters would be a naked singularity.

    Maybe if we want to know what the interior of a black hole really looks like, we have to look no further than to the electron.

  • (Score: 0) by Anonymous Coward on Monday June 02 2014, @08:20PM

    by Anonymous Coward on Monday June 02 2014, @08:20PM (#50391)

    "Actually, the electron has an intrinsic angular momentum (spin!), therefore even a centrally falling electron will give the black hole an angular momentum. BTW, from a quantum mechanical point of view, you'll change it from a bosonic to a fermionic black hole (assuming those terms make actually sense for black holes)."

    Ah, but as I suspect you know we'd need a quantum theory of gravity to know how the spin of an electron would interact with the spin of a black hole - they're related, but distinct, concepts. I've no doubt that in a quantum description of a black hole whatever the quantum analogue of the hole's angular momentum is would interact with the spin angular momentum of the electron, but I'm not feeling up to speculating just how at the minute. (It's possible that people working on loop quantum gravity have an idea. Alas, I don't know all that much about loop quantum. My impression is both that it's still hard to add matter into the theory, and also that the hole solution they have is Schwarzschild only, but I'm years out of date.)