The United Launch Alliance's CEO Tory Bruno has been making his case for the upcoming Vulcan rocket and Advanced Cryogenic Evolved Stage. The system could compete against SpaceX's Falcon Heavy and BFR in the mid-2020s:
The maiden flight of the Vulcan currently is targeted for the middle of 2020. Two successful commercial launches are required as part of the government certification process, followed by a required upper stage upgrade to improve performance, either moving from two to four Centaur RL10 engines or using a different set of engines altogether. If all goes well, ULA will introduce its new upper stage in 2024, the Advanced Cryogenic Evolved Stage, or ACES, that Bruno says will revolutionize spaceflight. "This is on the scale of inventing the airplane," Bruno told reporters during the media roundtable. "That's how revolutionary this upper stage is. It's 1900, and I'm inventing the airplane. People don't even know what they're going to do with it yet. But I'm confident it's going to create a large economy in space that doesn't exist today. No one is working on anything like this."
The Vulcan will stand 228 feet tall with a first stage powered by two engines provided by either Blue Origin, a company owned by Amazon-founder Jeff Bezos, or Aerojet Rocketdyne. Blue Origin's BE-4 engine burns methane and liquid oxygen while Aerojet Rocketdyne's AR-1 powerplant burns a more traditional mixture of oxygen and highly refined kerosene.
[...] ULA plans to begin engine recovery operations after the Vulcan is routinely flying and after the ACES upper stage is implemented. Bruno said the engines represent two-thirds of the cost of the stage and getting them back every time, with no impact on mission performance, will pay big dividends. SpaceX, in contrast, must use propellant to fly its Falcon 9 stages back to touchdown. Heavy payloads bound for high orbits require most if not all of the rocket's propellant and in those cases, recovery may not be possible. As a result, SpaceX's ability to recover rocket stages depends on its manifest and the orbital demands of those payloads.
"Simplistically, if you recover the old booster propulsively then you can do that part of the time, you get all the value back some of the time," Bruno said. "Or, you can recover just the engine, which is our concept, and then you get only part of the value back, about two thirds ... but you get to do it every single time because there's no performance hit. So it really turns into math."
ULA expects to fly at least 7-8 more Delta IV Heavy rockets between now and the early 2020s, with some Atlas V launches happening concurrently with the beginning of Vulcan launches in the mid-2020s.
The U.S. Air Force has just awarded ULA a $355 million contract to launch two Air Force Space Command spacecraft, and SpaceX a $290 million contract to launch three GPS Block III satellites.
In addition to testing BFR with short hops starting in 2019, SpaceX plans to send BFR into orbit by 2020. The company is leasing land in Los Angeles, reportedly for the construction of BFR rockets.
Related: SpaceX's Reusable Rockets Could End EU's Arianespace, and Other News
Boeing CEO Says His Company Will Carry Humans to Mars Before SpaceX
Zuma Failure Emboldens SpaceX's ULA-Backed Critics; Gets Support from US Air Force [Updated]
SpaceX to Launch Five Times in April, Test BFR by 2019
(Score: 5, Insightful) by Virindi on Tuesday March 20 2018, @06:22AM (7 children)
So what you're saying is, marketing decided how 'revolutionary' this product had to be and that's how 'revolutionary' it is.
Just like is standard in modern startups, make all the claims about how great your product is going to be and then let someone else figure out the details later. Except here, someone else has ALREADY FIGURED OUT THE DETAILS AND IS FLYING IT. Falcon Heavy is an incremental upgrade, this thing is a new as yet nonexistent design.
We seem to live in an era of huge, baseless promises.
(Score: 3, Insightful) by Immerman on Tuesday March 20 2018, @04:57PM (6 children)
I don't know about baseless promises - no reason to expect they won't deliver unless BFR drives launch prices so low so that the profit margins no longer justify finishing it. Baseless self-aggrandizement on the other hand...
(Score: 2) by Virindi on Wednesday March 21 2018, @10:09AM (5 children)
I was referring to ULA in that comment, but honestly, BFR is also in the "big promises" stage right now. I still do not find Big Promises trustworthy; BFR sounds really great, but I'll believe it when I see it.
Which is the same thing I said about Falcon stages landing on a barge. The idea seemed ridiculously difficult, but hey, they solved it. Great job and an amazing accomplishment, but that doesn't necessarily mean we should assume they will accomplish the next amazing feat. That remains to be seen. The BFR design right now falls into the "doing this economically would be ludicrous" category, but I will be happy if they prove me wrong again.
(Score: 2) by Immerman on Wednesday March 21 2018, @05:26PM (4 children)
I can't say I disagree, though it's worth noting that in many ways the BFR is an incremental promise atop what SpaceX has already delivered. Admittedly SEVERAL non-trivial incremental improvements combined, but nothing to make their plans seem particularly spectacular except the intended dramatic increase in re-usability. But when you get right down to it the BFR construction costs are projected to cost only several times as much as a Falcon 9 to build (10-20x as I recall), and thus should be able to economically replace the Falcon 9 if its reusability is improved enough to deliver a comparable level of savings. And depending on how well the extra payload capacity can be leveraged, the necessary "break even" increase in reusability may be much lower - For example if a BFR can use its 6x greater maximum payload to instead deliver just 3x the number of satellites to different orbits as an F9 in a single launch, then it need only achieve about 3-7x the level of reusability cost savings. to break even.
That certainly won't be enough to bring the revolution of $5M launches and affordable Mars missions he hopes for, but it would be enough to justify its replacing the F9, and thus provide a solid economic foundation for pursuing further refinements.
(Score: 2) by Virindi on Thursday March 22 2018, @12:05PM (3 children)
It seems like using one rocket to launch a large number of satellites would demand more deltav from each satellite to reach its final orbit?
I'm guessing this value is calculated in to how much a satellite owner is willing to pay for a launch?
(Score: 2) by Immerman on Thursday March 22 2018, @12:58PM (2 children)
Not necessarily - if you only launched with half the max payload you'd still have 3x the payload of an F9, while having a lot of fuel left over after you reached LEO to visit multiple different orbits and deploy satellites individually, depending on just how different those orbits are. Alternately, you could simply dramatically loosen the size and mass constraints on the satellites so that they could easily propel themselves to their final orbit. Or even develop mini-rockets - orbital boosters designed specifically for that "last mile" orbital insertion. The long-term ideal might be deploying a fleet of refuelable "orbital tugboats" that would rendezvous with the launcher for the purpose, as well as also retrieving and refueling satellites. Heck, it'd be inefficient overkill, but leave a few BFR Spaceships in orbit, equipped with robot arms and refueled with all the excess fuel every launch can carry. Or alternately, probably easier, use the cheaper, larger-tank BFR tankers to store excess fuel from some launches to refuel those that need more delta-v. Why launch with less than full fuel tanks? That fuel will be valuable in orbit.
(Score: 2) by Virindi on Thursday March 22 2018, @01:29PM (1 child)
Those ideas require that stuff be launched into similar orbits, large additional complexity, or added capacity on the part of the thing being launched. Sure that's all possible, but it's not as simple as just slapping multiple satellites on the same rocket.
Too bad real life isn't like KSP, where every launch goes to an equatorial orbit :D
(Score: 2) by Immerman on Thursday March 22 2018, @02:19PM
Similar orbits certainly makes things easier, but how similar they need to be would depend very heavily on how much available delta-V the Spaceship has remaining after reaching orbit. And transferring fuel to/from an orbital tanker would actually be an excellent way to perfect what they hope to make a routine process for lunar and interplanetary missions.
Meanwhile, added satellite capacity is relatively trivial - a bigger "gas tank" is no great challenge, especially given much more generous mass and size constraints for the same launch cost.