Japan is taking us one step closer to a space elevator.
Elon Musk may not believe in space elevators yet, but Japan is taking a step forward to realise the dream of travelling to space by elevators instead of the traditional rocket.
A team of researchers from Japan's Shizuoka University and other institutions will conduct the first test in space this month as part of a project to build a space elevator, Japan's The Mainichi reported last week. The space elevator essentially ferries people and cargo shipments in an elevator car travelling on a cable connecting Earth to a space station.
This test is the first exploring the movement of a container on a cable in space. Two ultra-small cubic satellites measuring 10 centimeters on each side connected by a steel cable about 10 metres long will be carried from Kagoshima's Tanegashima Space Center to the International Space Station on Sept. 11.
From there, the connected satellites will be launched and a motorised container acting as an elevator car will travel along the cable and have its journey recorded via a camera attached to the satellites.
The project's technical advisor, Japan's construction giant Obayashi Corporation, is also working on a similar project, though it previously said it expects to deliver a space elevator by 2050.
(Score: 1, Interesting) by Anonymous Coward on Tuesday September 04 2018, @03:04PM (1 child)
> a blast path that will likely go out to sea
At first, maybe. The problem is, the blast path will keep going, and going, and going... I'm sure that there'll be multiple blast points and failsafes to break it up and let the top part fly off into space, but in the worst case (the entire cable goes down), it will wrap around the equator, and more. Therefore, it doesn't really matter where you put it -- the entire equator is the blast path.
(Score: 1, Interesting) by Anonymous Coward on Tuesday September 04 2018, @03:55PM
If it is segmented in the event of an emergency, then this not necessarily so. It will take a long time for the parts to come down, and the higher they are the more time you have adjust the descent trajectory. Which is to say 1000 segments can be dropped into the sea at 1000 different locations, over a period of many months, and still never hit land.