Stories
Slash Boxes
Comments

SoylentNews is people

posted by martyb on Tuesday April 14 2020, @09:38PM   Printer-friendly
from the how-many-digits-in-a-real-number? dept.

In a number system where the real numbers could not have an infinite number of digits, how would our physics models change?

Does Time Really Flow? New Clues Come From a Century-Old Approach to Math.:

Strangely, although we feel as if we sweep through time on the knife-edge between the fixed past and the open future, that edge — the present — appears nowhere in the existing laws of physics.

In Albert Einstein's theory of relativity, for example, time is woven together with the three dimensions of space, forming a bendy, four-dimensional space-time continuum — a "block universe" encompassing the entire past, present and future. Einstein's equations portray everything in the block universe as decided from the beginning; the initial conditions of the cosmos determine what comes later, and surprises do not occur — they only seem to. "For us believing physicists," Einstein wrote in 1955, weeks before his death, "the distinction between past, present and future is only a stubbornly persistent illusion."

The timeless, pre-determined view of reality held by Einstein remains popular today. "The majority of physicists believe in the block-universe view, because it is predicted by general relativity," said Marina Cortês, a cosmologist at the University of Lisbon.

However, she said, "if somebody is called on to reflect a bit more deeply about what the block universe means, they start to question and waver on the implications."

Physicists who think carefully about time point to troubles posed by quantum mechanics, the laws describing the probabilistic behavior of particles. At the quantum scale, irreversible changes occur that distinguish the past from the future: A particle maintains simultaneous quantum states until you measure it, at which point the particle adopts one of the states. Mysteriously, individual measurement outcomes are random and unpredictable, even as particle behavior collectively follows statistical patterns. This apparent inconsistency between the nature of time in quantum mechanics and the way it functions in relativity has created uncertainty and confusion.

Over the past year, the Swiss physicist Nicolas Gisin has published four papers that attempt to dispel the fog surrounding time in physics. As Gisin sees it, the problem all along has been mathematical. Gisin argues that time in general and the time we call the present are easily expressed in a century-old mathematical language called intuitionist mathematics, which rejects the existence of numbers with infinitely many digits. When intuitionist math is used to describe the evolution of physical systems, it makes clear, according to Gisin, that "time really passes and new information is created." Moreover, with this formalism, the strict determinism implied by Einstein's equations gives way to a quantum-like unpredictability. If numbers are finite and limited in their precision, then nature itself is inherently imprecise, and thus unpredictable.

Physicists are still digesting Gisin's work — it's not often that someone tries to reformulate the laws of physics in a new mathematical language — but many of those who have engaged with his arguments think they could potentially bridge the conceptual divide between the determinism of general relativity and the inherent randomness at the quantum scale.

[...] The modern acceptance that there exists a continuum of real numbers, most with infinitely many digits after the decimal point, carries little trace of the vitriolic debate over the question in the first decades of the 20th century. David Hilbert, the great German mathematician, espoused the now-standard view that real numbers exist and can be manipulated as completed entities. Opposed to this notion were mathematical "intuitionists" led by the acclaimed Dutch topologist L.E.J. Brouwer, who saw mathematics as a construct. Brouwer insisted that numbers must be constructible, their digits calculated or chosen or randomly determined one at a time. Numbers are finite, said Brouwer, and they're also processes: They can become ever more exact as more digits reveal themselves in what he called a choice sequence, a function for producing values with greater and greater precision.

By grounding mathematics in what can be constructed, intuitionism has far-reaching consequences for the practice of math, and for determining which statements can be deemed true. The most radical departure from standard math is that the law of excluded middle, a vaunted principle since the time of Aristotle, doesn't hold. The law of excluded middle says that either a proposition is true, or its negation is true — a clear set of alternatives that offers a powerful mode of inference. But in Brouwer's framework, statements about numbers might be neither true nor false at a given time, since the number's exact value hasn't yet revealed itself.

In work published last December in Physical Review A, Gisin and his collaborator Flavio Del Santo used intuitionist math to formulate an alternative version of classical mechanics, one that makes the same predictions as the standard equations but casts events as indeterministic — creating a picture of a universe where the unexpected happens and time unfolds.


Original Submission

 
This discussion has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
  • (Score: 2) by c0lo on Wednesday April 15 2020, @12:33AM

    by c0lo (156) Subscriber Badge on Wednesday April 15 2020, @12:33AM (#982855) Journal

    Actually, the claim that physics works quite well without the continuity of the real numbers is a very strong claim, with strong implications about what the theories mean.

    I don't thinks so, not in any practical sense or even epistemological sense.

    N.B.: If the powerset of all energy-states of all locations in the universe is a finite number, then you've limited what can happen.

    I still have no problem with that. Some examples:

    • finite as it may be, the limits will be so humongous that the collapse of giant stars in a neutron ones (when the electron degeneracy can no longer support the gravitational pressure) is still allowed (see? an example of how a limited number of state postulated by the Fermi statistics actually explains/models what we observe in reality)
    • the ergodic hypothesis [wikipedia.org] posits that, given enough time, you will witness the event of the pieces of a broken teacup jump from the floor and reconstitute themselves in the original teacup. If the entire Universe would be made just from the floor, teacup and table, after the finite time of > 1020 the time of our Universe, such an event may happen. Do you think this would make any difference in how the human science is going to look like?
      (Recall that a Laplace demon cannot exist embedded in the Universe it is meant to predict [wikipedia.org])

    In other words, even finite limits is not going to modify the models that physics propose for the reality at human scales, if those limits are larger that the scientific humanity can handle. We're still going to use error bars and make predictions based on those models, even when they are accurate only at 20 bits (= 6·σ).

    ---

    Now, extension, do you think it would matter much on how we model the Universe if we don't consider "limited number of states" but the only restriction we set is that "the phase space of this Universe is totally quantified and all the values are countable (instead of being of the power of the continuum) but still infinite"?

    --
    https://www.youtube.com/watch?v=aoFiw2jMy-0 https://soylentnews.org/~MichaelDavidCrawford
    Starting Score:    1  point
    Karma-Bonus Modifier   +1  

    Total Score:   2