Stories
Slash Boxes
Comments

SoylentNews is people

posted by hubie on Wednesday April 03, @10:56AM   Printer-friendly

Arthur T Knackerbracket has processed the following story:

A flat sheet of atoms can act as a kind of antenna that absorbs light and funnels its energy into carbon nanotubes, making them glow brightly. This advance could aid the development of tiny future light-emitting devices that will exploit quantum effects.

Carbon nanotubes resemble very thin, hollow wires with a diameter of just a nanometer or so. They can generate light in various ways. For example, a laser pulse can excite negatively charged electrons within the material, leaving positively charged "holes." These opposite charges can pair up to form an energetic state known as an exciton, which may travel relatively far along a nanotube before releasing its energy as light.

In principle, this phenomenon could be exploited to make highly efficient nanoscale light-emitting devices.

Unfortunately, there are three obstacles to using a laser to generate excitons within carbon nanotubes. First, a laser beam is typically 1,000 times wider than a nanotube, so very little of its energy is actually absorbed by the material. Second, the light waves must align perfectly with the nanotube to deliver their energy effectively. Finally, the electrons in a carbon nanotube can only absorb very specific wavelengths of light.

To overcome these limitations, a team led by Yuichiro Kato of the RIKEN Nanoscale Quantum Photonics Laboratory turned to another class of nanomaterials, known as 2D materials. These flat sheets are just a few atoms thick, but they can be much wider than a laser beam, and are far better at converting laser pulses into excitons.

The researchers grew carbon nanotubes over a trench carved from an insulating material. They then placed an atomically thin flake of tungsten diselenide on top of the nanotubes. When laser pulses hit this flake, they generated excitons that moved into the nanotube and along its length, before releasing light of a longer wavelength than the laser. It took just one trillionth of a second for each exciton to pass from the 2D material into the nanotube.

[...] "We hope to utilize this concept to develop photonic and optoelectronic devices that are just a few atomic layers thick," adds Kato. "If we can shrink them to the atomically thin limit, we expect novel quantum effects to emerge, which may become useful for future quantum technologies."

More information: N. Fang et al, Resonant exciton transfer in mixed-dimensional heterostructures for overcoming dimensional restrictions in optical processes, Nature Communications (2023). DOI: 10.1038/s41467-023-43928-2


Original Submission

This discussion was created by hubie (1068) for logged-in users only, but now has been archived. No new comments can be posted.
Display Options Threshold/Breakthrough Mark All as Read Mark All as Unread
The Fine Print: The following comments are owned by whoever posted them. We are not responsible for them in any way.
(1)
  • (Score: 3, Interesting) by Spamalope on Wednesday April 03, @07:03PM

    by Spamalope (5233) on Wednesday April 03, @07:03PM (#1351514) Homepage

    I wonder if this can be a better scintillator for lasers that shifts the market for lamps. If this can be developed into a random array that shifts to visible light evenly, you can shine UV laser light and get white light out efficiently which could change how we do solid state lighting eventually.
    I'd imagine fiber optics 1st, with the possibility of optical circuits if they get useful control over quantum effects? This looks like a promising step that may lead to a breakthrough without quite being one itself - at least in this category. Something to watch though, as things could move quickly if they get traction (or stay stalled until something new and synergistic is discovered)

(1)