Stories
Slash Boxes
Comments

SoylentNews is people

SoylentNews is powered by your submissions, so send in your scoop. Only 11 submissions in the queue.

Submission Preview

Link to Story

The Real Reason Germs Spread in the Winter

Accepted submission by Phoenix666 at 2015-10-19 14:21:05
Science

The flu season arrives so predictably, and affects so many of us, that it’s hard to believe that scientists have had very little idea why cold weather helps germs to spread.
...
the answer may have been lying invisible in the air that we breathe [bbc.com]. Thanks to the laws of thermodynamics, cold air can carry less water vapour before it reaches the “dew point” and falls as rain. So while the weather outside may seem wetter, the air itself is drier as it loses the moisture. And a steady stream of research over the past few years has shown that these dry conditions seem to offer the perfect environment for the flu virus to flourish.
...
That’s counter-intuitive – we normally think that the damp makes us ill, rather than protects us from disease. But to understand why, you need to grasp the peculiar dynamics of our coughs and sneezes. Any time we splutter with a cold, we expel a mist of particles from our nose and mouths. In moist air, these particles may remain relatively large, and drop to the floor. But in dry air, they break up into smaller pieces – eventually becoming so small that they can stay aloft for hours or days. (It’s a bit like the mist you get when you turn a hose pipe to its finest spray.) The result is that in winter, you are breathing a cocktail of dead cells, mucus and viruses from anyone and everyone who has visited the room recently.

What’s more, water vapour in the air seems to be toxic to the virus itself. Perhaps by changing the acidity or salt concentration in the packet of mucus, moist air may deform the virus’s surface, meaning that it loses the weaponry that normally allows us to attack our cells. In contrast, viruses in drier air can float around and stay active for hours – until it is inhaled or ingested, and can lodge in the cells in your throat.


Original Submission